
Identifying Combinatorial Structures for
Binary Strings and Set Partitions

Sigurður Helgason James Robb

Final Report in Computer Science B.Sc.

2018

Name: Sigurður Helgason James Robb
Kennitala:
Primary Advisor: Christian Bean

School of Computer Science
Tölvunarfræðideild

ii

Heiti verkefnis:

Námsbraut: Tegund verkefnis:

Önn: Námskeið: Ágrip:

Höfundur:

Umsjónarkennari:

Leiðbeinandi:

Fyrirtæki/stofnun:

Dagsetning: Lykilorð íslensk: Lykilorð ensk:

Dreifing:
opin lokuð til:

Háskólinn í Reykjavík Menntavegi 1, 101 Reykjavík sími: 599 6200
www.ru.is

Identifying Combinatorial Structures for Binary Strings
and Set Partitions

Computer Science B.Sc. Final Report in Computer Science B.Sc.

2018–1 T LOKA 404

Sigurður Helgason
James Robb

Christian Bean

Henning Ulfarsson

Reykjavik University
Menntavegi 1
101 Reykjavik

10.05.2018 fléttufræði, bita-
strengir, mengis-
skiptingar

combinatroics, bi-
nary strings, set
partitions

The goal of enumerative combinatorics is to
count the number of some well described ob-
jects. We extend the algorithm of Bean et al.
that automates this process to work with bi-
nary strings and set partitions. This involves
teaching the computer about binary strings,
set partitions, and the ideas behind the proofs
of results in this area.

X

iv

Acknowledgements

We wish to extended our deepest thanks and gratitude to Christian Bean and Henning Ulfarsson
for their unwavering support throughout the duration of this work and throughout our years of
study. Without them we would not have been able to enjoy the level of success we’ve achieved
thus far. We would also like to thank the entire computer science department at Reykjavik
University for their continued support in our studies and development as computer scientists.

vi

vii

Contents

Acknowledgements v

Contents vii

1 Introduction 1
1.1 CombSpecSearcher . 1

1.1.1 Strategies . 1
1.1.2 CombSpecSearcher Results . 2
1.1.3 Combinatorial Specification Example 2

2 Methods 3
2.1 Binary Strings . 3

2.1.1 Defintions and Binary Strings . 3
2.1.2 Strategies . 4
2.1.3 Enumerating Binary Strings . 5

2.2 Set Partitions . 8
2.2.1 Definitions and Partition Tilings . 8
2.2.2 Strategies . 11
2.2.3 Combinatorial Specification for Non-Crossing Partitions 16

3 ComboPal 19
3.1 Description . 19
3.2 ComboPal Technology . 19

4 Results 21
4.1 Binary Strings . 21
4.2 Set Partitions . 21
4.3 Conclusion . 23
4.4 Future Work . 23

Bibliography 25

viii

1

Chapter 1

Introduction

The field of automatic discovery of combinatorial specifications is rather young and no general
method has been implemented. The ECO method [1] can in theory be applied to any sub-
field of combinatorics but has not been implemented. Our advisors along with a group of
researchers have recently implemented a general purpose algorithm, CombSpecSearcher
[2], for constructing combinatorial specifications. However it relies on the user to write domain-
specific strategies to be useful in a particular field. Currently strategies for the avoidance of
classical permutation patterns are the only existing strategies.

In this report we explore strategies for other combinatorial objects. In Section 2.1 we de-
velop strategies to find combinatorial specifications for binary strings avoiding consecutive se-
quences. In Section 2.2 we develop strategies to find combinatorial specifications for pattern
avoiding set partitions.

We expand on the work of past Reykjavik University students on the PermPal system [3],
which can visualize automated proofs for the class of permutations avoiding some pattern. Our
work allows for the visualization of the automated proofs produced by CombSpecSearcher
for binary strings, set partitions, and permutation patterns. We call the system ComboPal [4],
and it will be discussed in greater detail in Section 3.1.

1.1 CombSpecSearcher
CombSpecSearcher is a system created by Bean et al. [2] at Reykjavik University. The
CombSpecSearcher system utilizes a series of strategies in order to find a combinatorial
specification of a combinatorial class. The CombSpecSearcher produces these combinato-
rial specifications in the form of a proof tree. The combinatorial specification can be translated
to a system of equations which can be solved to yield a generating function which enumerates
the class of the combinatorial specification.

1.1.1 Strategies
There are four types of strategies used by CombSpecSearcher:

• Batch strategies which split a combinatorial class into disjoint sub-classes of that combi-
natorial class.

• Inferral strategies which infer information about a combinatorial class based on the con-
text of the class.

• Verification Strategies which verify if a combinatorial class is directly countable. It is
necessary for CombSpecSearcher to determine whether or not a combinatorial class

2 CHAPTER 1. INTRODUCTION

is equal to the empty set H, a strategy which achieves this is considered a verification
strategy.

• Decomposition strategies which convert a combinatorial class into multiple combinatorial
classes that together represent the original class.

These strategies all represent somehow breaking apart or gaining new information on a
given combinatorial class. When searching for a combinatorial specification, these strategies
represent different mathematical operations in the system of equations within the combinatorial
specification.

1.1.2 CombSpecSearcher Results
CombSpecSearcher is initialized with some initial combinatorial class c and a set C “ tcu.
CombSpecSearcher applies a series of strategies to all combinatorial classes in C. These
strategies return additional combinatorial classes, and those additional combinatorial classes are
added to C. CombSpecSearcher repeats this process until a valid combinatorial specifica-
tion has been found.

A valid combinatorial specification is a combinatorial specification where every node either
appears once internally or is verified. Once a combinatorial specification is found for the initial
combinatorial class, CombSpecSearcher returns it.

1.1.3 Combinatorial Specification Example
Figure 1.1 is an example of a CombSpecSearcher proof tree for a combinatorial class which
we discuss in-depth in Section 2.1. The tree represents the combinatorial specification of all
binary strings that don’t contain 10. Notice that every leaf node is either verified or recurses to
a node seen elsewhere in the tree.

10ε

100εε 101

ε0 10ε

ε1 1011

ε1 101

Root node

Verified node

Recursed nodeVerified node

Verified node

Verified node

Recursed node

Figure 1.1: Example of a proof tree from CombSpecSearcher

3

Chapter 2

Methods

2.1 Binary Strings

2.1.1 Defintions and Binary Strings
In this section we introduce strategies used by CombSpecSearcher for classes of binary strings
that avoid one or more patterns of consecutive sequences. To describe this we must first intro-
duce a few definitions:

Definition 2.1.1. We say that B represents the set of all binary strings.

Definition 2.1.2. Let σ, τ P B. We say σ contains τ if τ is a consecutive substring of σ.
Conversely, we say that a binary string σ avoids a binary string τ if σ does not contain τ .
If U is a set of binary strings, we say σ avoids U if σ avoids all binary strings in U .

For example the binary string 1001 avoids the binary string 101 but it contains the binary
string 100.

Definition 2.1.3. Let U Ď B. We define AvpUq “ ts | s P B, s avoids @u P Uu as the
class of binary strings that avoid the set U . If U is minimal with respect to containment we
call U the basis of the class AvpUq.

Definition 2.1.4. Let p P B, U Ď B. We define a binary string descriptor (BSD) as
BSDpp, Uq “ tps | s P AvpUqu. That is, a BSD represents a class of binary strings where
each string starts with the prefix p followed by a string from the class AvpUq.

As an example consider B “ BSD(10, U “ t11u). It can be seen that 1 P AvpUq, and as
such the binary string 101 P B.

We introduce a visual representation for BSD B “ BSD(p, U). The visual representation
takes the form of two blocks. The first block depicts the prefix of the BSD and the second block
depicts the strings that make up the basis of B. The basis block is drawn in red. It is often the
case that theAvpUq “ H, in that case instead of displaying the basis strings in the second block
we draw an ε. Examples of this visual representation can be see in Figure 2.1.

4 CHAPTER 2. METHODS

10
11

1 ε0

Figure 2.1: On the left a BSD(1,t10, 11u) is displayed to the right a BSD(0,t0, 1u)

2.1.2 Strategies
We now introduce strategies CombSpecSearcher can apply to BSDs to find a combinatorial
specification for a given BSD. We employ four strategies:

Strategy (Expansion). Expansion is a batch strategy that is applied to BinaryStringDe-
scriptors. Given a BSD B0 “ BSD(p,U), three new BSDs B1, B2, and B3 are produced.
They are defined as such:

• B1 “ BSDpp, t1, 0uq. That is, B1 is has the same prefix as B0 and its basis repre-
sents the class that only contains the empty string.

• B2 “ BSDpp0, Uq. That is B2 has the same prefix as B0 appended with a 0.
• B3 “ BSDpp1, Uq. That is B3 has the same prefix as B0 appended with a 1.

For example applying the expansion strategy to BSD(ε, t101u) produce three new BSD as
seen in Figure 2.2. If the expansion strategy is called on a BSD with prefix ε and then on the
produced BSD, and so on n-times, it will construct all BSDs whose prefixes are the binary
strings of length less than or equal to n.

10ε

100εε 101

Figure 2.2: Expansion strategy being applied to BSD with prefix ε and basis 10

Strategy (Is literal). Is literal is a verification strategy that is applied to BinaryStringDe-
scriptors. Given a BSD(p, U), if U “ t0, 1u (represents the set containing only ε) we verify
that we can directly enumerate this class of binary strings. Since this class represents tpu
the direct enumeration of this class is 1.

Strategy (Is empty). Is empty is a verification strategy that is applied to BinaryStringDe-
scriptors. Given a BSDB “ BSD(p, U) if p does not avoid U , then we verify that this BSD
doesn’t contribute to the combinatorial specification of the class. We call BSD’s which are
verified by this strategy empty BSD’s.

Consider BSD(110, t11, 001u) and BSD(101, t111u), the two BSD displayed in Figure 2.3.
The prefix of the BSD on the left contains 11 which is a string in its basis, and is therefore
empty. While the BSD on the right will not be verified by the is empty strategy.

2.1. BINARY STRINGS 5

11
001

110
111101

Figure 2.3: Is empty strategy being applied to BSD’s

Definition 2.1.5. For a BSD(p, U), Let psuffix be the longest suffix of p which is a prefix
of some u P U , and let pprefix be the characters in p before psuffix.

Theorem 2.1.1. Let B “ BSD(p, U) be a non-empty BSD, then B = BSD(pprefix, t0, 1u)
Ś

BSD(psuffix, U).

Proof. Let B “ BSD(p, U) be a non-empty BSD, i.e, the set of all binary strings which start
with p and end with a binary string avoiding U . In B, we have that pprefix is some amount of
characters, possibly zero, which don’t contribute to the creation of a pattern in U by definition.
Therefore, psuffix is the only portion of p which could possibly construct a pattern in U . Let
B1 “ BSD(pprefix, t0, 1u)“ tpprefixu, andB2 “ BSD(psuffix, U). In order to constructB from
B1 and B2 we can prepend pprefix to all strings in B2. This is done by cartesian product.

For example B “ BSD(p “ 1, U “ t0u) is the set consisting of the binary strings
t1, 11, 111, 1111, . . .u. We see that pprefix “ 1 and psuffix “ ε. Construct B1 “ BSD(pprefix,
t0, 1u) = t1u and B2 “ BSD(psuffix, U) “ tε, 1, 11, 111, . . .u, as in Theorem 2.1.1. If we
prepend all elements inB1 to all elements inB2 we get t1, 11, 111, . . .u orB. SoB1

Ś

B2 – B.

Strategy (Splitting). Splitting is a decomposition strategy that is applied to BinaryStringDe-
scriptors. Given a B “ BSD(p, U), the splitting strategy produces two BSD’s. It splits B
into the BSD’s B1 “ BSD(pprefix, t0, 1u) and B2 “ BSD(psuffix, U). If pprefix “ ε the
splitting strategy doesn’t produce any results.

For example, BSD(p “ 01, U “ t10u) has pprefix “ 0 and psuffix “ 1. As pprefix ‰ ε the
splitting strategy produces two BSD’s which can be seen in Figure 2.4.

1001

ε0 101
Figure 2.4: Strategy decomposition being applied to BSD(01, t10u)

2.1.3 Enumerating Binary Strings
To be able to enumerate an avoidance class of binary strings, we must solve the system of
equations that result from the production of the combinatorial specification. To solve the system
of equations one must consider each node as either directly countable (verified), or the node
represents an equation where the operands of the equation are the equations of its children.

6 CHAPTER 2. METHODS

The mathematical operation applied to the operands is selected based on the strategy used to
produce the children.

• Expansion strategy: The produced BSD’s are a disjoint union of their parent BSD, we
calculate the disjoint union by addition.

• Splitting strategy: The produced BSD’s are representative of the same object and the
operation is a multiplication.

• Is Literal: The BSD’s verified by the is literal strategy return the generating function for
counting a single item of a given length. For a binary string of length n, the resulting
generating function is xn.

• Is Empty: They represent an empty set so they return 0.

Proposition 2.1.1. Running CombSpecSearcherwith these strategies on a BinaryStringDe-
scriptor is guaranteed to halt, with a valid combinatorial specification.

Proof. Let B “ BSD(p, U) be a non-empty BSD, let l be the maximum length of the patterns
in U and call the longest pattern σ. If the length of p is greater than l then the splitting strategy
could split p, as we’ve asserted that σ is the longest pattern in U . Also, psuffix has to be shorter
than σ, otherwise p would contain σ. There are a finite amount of binary strings of length less
than or equal to l. Using the expansion strategy all BSD’s with prefix of length less than or
equal to l are constructed. Constructing all BSD’s of length less than or equal to l will result
in a tree where each of the leaf nodes are either verified by Is Empty, Is Literal, or they have
recursed. That represents a valid combinatorial specification.

Proposition 2.1.2. The resulting combinatorial specification can be converted to be represented
by a Non-deterministic finite automata (NFA).

Proof. We take a step by step approach to construct an NFA describing the combinatorial spec-
ification.

• Create an accepting state in an NFA for every non literal BSD in the combinatorial spec-
ification.

• The initial state in the NFA corresponds to the root of the combinatorial specification.
• If the expansion strategy is applied to a BSD, construct edges from the expanded object

to the products labelled by the corresponding appended character.
• If the splitting strategy is applied to a BSD, construct an ε-transition to the non-literal

BSD that was produced.
• If a BSD B1 produces a BSD which recurses to a BSD B2, construct an ε-transition from
B1 to B2

Consider the combinatorial specification for the class of binary strings avoiding 10. We
begin by looking at the resulting combinatorial specification as a tree, seen in Figure 2.5. Note
that the BSD’s which have been verified by the is empty strategy do not contribute to the enu-
meration of this class and are not present in the tree. For this reason they are not required for
the NFA conversion.

2.1. BINARY STRINGS 7

10ε

100εε 101

ε0 10ε

ε1 1011

ε1 101

expansion

splitting

expansion

splitting

Figure 2.5: Visual representation of the combinatorial specification for binary strings that avoid
10.

The resulting NFA after converting the combinatorial specification in Figure 2.5 can be seen
in Figure 2.6.

ε | 10

start

0 | 10 1 | 10

11 | 10

0

1

1

ε

ε

Figure 2.6: NFA representing the combinatorial specification shown in Figure 2.5

Proposition 2.1.3. The combinatorial specification represents a system of equations that can be
solved to construct a rational generating function.

Proof. We know a combinatorial specification for an avoidance class of binary strings has a
representation as an NFA, and as such it has a representation as a deterministic-finite automata
(DFA). It is a well known property that the language of a DFA has a rational generating function
[5]. Therefore each avoidance class of binary strings has a rational generating function that
enumerates the class.

8 CHAPTER 2. METHODS

2.2 Set Partitions

2.2.1 Definitions and Partition Tilings

To begin to examine set partition in the context of combinatorial specification we utilize the
definitions of a set partition, standard form, canonical standard form, avoidance, and patterns
from Vít Jelínek et al [6]. We repeat them here before beginning our analysis.

Definition 2.2.1. For a given integer n ě 1 we say a set partition of Sn “ t1, 2, . . . , nu is
a set of non-empty subsets called blocks of Sn that are pairwise disjoint and their union is
Sn. We allow n “ 0 and in such case Sn “ H. A partition X of Sn with k-blocks is called
a k-partition. We denote the set of all k-partitions of Sn by Pn,k.

Definition 2.2.2. A set partition X P Pn,k is said to be in standard form if it is written
X “ X1{X2{ . . . {Xk and arranged such that minpX1q ă minpX2q ă . . . ă minpXkq and
each subset Xi P X, 1 ď i ď k is ordered in ascending order by its elements. The same
set partition X can equivalently be written in canonical standard form as π “ π1π2 ¨ ¨ ¨ πn
where πi “ j such that i P Xj, 1 ď j ď n.

For example, consider the set S5 “ t1, 2, 3, 4, 5u and the set partitionX “ 1, 3{2, 5{4 which
is written in standard form. The canonical standard form equivalent of X is π “ 12132. This is
because we see 1 and 3 in the first block, 2 and 5 in the second block, and finally 4 in the third
block.

Throughout this report we will consider set partitions in standard canonical form (when not
represented visually) as they provide for simple pattern occurrence checking. This is of great
interest to us as we are primarily concerned with describing classes of set partitions that avoid
a given pattern.

Definition 2.2.3. Let σ “ σ1σ2 ¨ ¨ ¨ σn and τ “ τ1τ2 ¨ ¨ ¨ τm be set partitions in canonical
standard form. We say an occurrence of τ exists in σ if there exists a subsequence in σ that
is order-isomorphic to τ ; that is, σ contains a subsequence σfp1q, σfp2q, . . . , σfpmq where
1 ď fp1q ď fp2q ď . . . ď fpmq ď n such that for each i, j P Sm we have σfpiq ă σfpjq if
and only if τi ă τj and σfpiq ą σfpjq if and only if τi ą τj . Otherwise, we say σ avoids τ .
In this context we refer to τ as a pattern.

Consider the partition σ “ 1123. It contains three subsequences which are order-isomorphic
to the pattern 12. They are σ2σ3 “ 12, σ3σ4 “ 23, and σ1σ4 “ 13. In this instance σ does not
avoid the pattern 12.

We introduce a visual representation for set partitions that takes the form of a grid. For each
block in a set partition a corresponding column exists in the grid. Elements in the blocks are
then placed as points on the grid where their x-coordinate corresponds to the block they are in,
and their y-value corresponds to their value in canonical form. For example the set partition
σ “ 121 (or 1, 3{2 in standard form) is depicted in Figure 2.7.

2.2. SET PARTITIONS 9

Figure 2.7: Visual representation of the set partition 121.

In examining set partitions we are concerned with describing combinatorial specifications
for classes of set partitions that avoid one or more patterns.

Definition 2.2.4. Let P be the set of all set partitions and B Ď P . We define AvpBq “ tp |
p P P such that @b P B we have that p avoids bu as the class of set partitions that avoids B.
We call B the basis of the class AvpBq if B is minimal with respect to containment; that
is, no pattern in B contains an occurrence of another.

We expand the idea of the visual representation introduced for set partitions to accommodate
searching for a combinatorial specification using CombSpecSearcher by introducing the
idea of a partition tiling. This acts both as an abstract notation of a class of set of partitions and
as a data structure used in code.

Definition 2.2.5 (Partition Tiling). Let M be a matrix whose entries are from t , ,B, su
with a barrier separating the columns at index l. Given a set partition X represented visu-
ally, anM -gridding ofX is a set of vertical and horizontal lines such that the grid produced
by (and consisting only of) the drawing of these lines on X produces a grid with the same
dimensions as M . The cells in M are all one of the following:

• Point cell represented by . After drawing gridding lines there must only be a single
point in the cell.

• Unfinished cell represented by . Points placed in this cell must all be in the same
block.

• Basis cell represented by B. Points placed in this cell must avoid B. When a column
in the gridding has multiple basis cells the column as a whole must also avoid B.

• Shaded cell represented by s. This cell must remain empty in the gridding.
Let T pMq denote the set of set partitions with a gridding on M . We abuse notation and
use T as a shorthand for T pMq and call it a partition tiling. The columns to the left of
index l in M are called concrete blocks of the partition tiling, while the columns to the
right are called abstract columns of the partition tiling. Concrete blocks may only contain
point cells, unfinished cells, and shaded cells. Abstract columns may only contain basis
cells and shaded cells.

A partition tiling T splits the visual representation of a set partition into concrete blocks
and abstract columns by its vertical barrier. The concrete blocks are blocks that will definitely
appear in each set partition the partition tiling could possibly represent. Point cells represent a
point that must appear in every set partition in T while unfinished cells represent zero or more
points. Basis cells represent (and could be replaced by) any set partition in AvpBq. We use
a thick black line to denote the vertical barrier between concrete blocks and abstract columns.

10 CHAPTER 2. METHODS

For example, let us consider the partition tiling in Figure 2.8 that depicts the partition tiling with
the basis B “ t121u. We assert that that the unfinished cell contains no points and we insert
a set partition from AvpBq into the basis cell. After drawing the blue lines on the resulting set
partition we can see that it has a gridding on T and therefore is in T .

B

Figure 2.8: The partition tiling T with basis B “ t121u and a set partition with a gridding on
T . The gridding lines are highlighted in blue.

Let us modify the partition tiling in Figure 2.8 by placing a point in the unfinished cell (and
therefore claiming there are definitely two points in the first block), and asserting it is the next
highest point in that block. The resulting partition tiling seen in Figure 2.9 has two basis cells.
This is because when placing another point it can be inserted between any of the points in the
basis cell. The resulting partition tiling reflects all possible interleavings of the newly placed
point. To illustrate the idea of point interleaving over multiple basis cells, we insert the partition
122 into the partition tiling seen in Figure 2.10. All of the possible results from this insertion
are seen the figure.

B

B

Figure 2.9: The partition tiling resulting from inserting a point into the unfinished cell in Figure
2.8.

2.2. SET PARTITIONS 11

B

B

Figure 2.10: A partition tiling with all possible ways to insert the set partition 122 (highlighted
in red) into its basis cells

2.2.2 Strategies

The partition tiling notation and data structure provides a sufficient means of describing set par-
titions in an abstract manner, but before combinatorial specifications can be found for avoidance
classes of set partitions a set of strategies for CombSpecSearcher will need to be defined.
We begin with column insertion.

Strategy (Column Insertion). Column insertion is a batch strategy applied to a partition
tiling. Given a partition tiling T , a set of new partition tilings are returned. Two different
cases occur during column insertion:

• The partition tiling T is duplicated and the left-most abstract column is removed.
This is asserting that there are no more points in that column that could be placed.

• In the other case, we assert that there is at least one point that is contained in the left-
most abstract column T . A copyC0 is taken of the left-most abstract column of T and
the basis cells in it are converted into unfinished cells. Then for each unfinished cell
u in C0, a copy of T is made with C0 inserted as the right-most concrete block and
a point inserted into u. For each u in where a point is inserted, the unfinished cells
below it are shaded as placing a point also asserts the new point is the minimum point
in that block. Note that if placing a point in any u violates the ordering restrictions
we place on set partitions, it is also shaded.

From the description of the column insertion strategy we know that it is possible that the
strategy will yield multiple objects. In Figure 2.11, we see that we obtain three results. The
first result demonstrates the case in where the abstract column is asserted to be empty, while the
latter two results demonstrate the possible point placements. Note that we see only one basis
cell in the last result. This is due to the fact that we assert the newly placed point in that block
is the minimum point in that block, and therefore no points can exist lower than it later in the
partition tiling without violation of the ordering we impose on set partitions.

12 CHAPTER 2. METHODS

B

B

B

B

B

Figure 2.11: A partition tiling followed by the result of applying column insertion to it. New
points are highlighted in red.

Strategy (Point Insertion). Point insertion is a batch strategy applied to a partition tiling.
Given a partition tiling T , a set of new partition tilings is returned. For each unfinished
cell u inside the concrete blocks of T , either we shade that cell, or insert a point into it;
that is, for each u two new partition tilings are returned. Two variants of this strategy exist;
minimum point insertion and maximum point insertion. When placing a point inside an
unfinished cell we assert that the newly placed point is either the minimum point that the
cell could represent, or the maximum point the cell could represent.

This difference between minimum and maximum point insertion is illustrated in Figure
2.12. We can see that minimum point insertion and maximum point insertion yield two different
results. When we use CombSpecSearcher to search for a combinatorial specification both
variants of point insertion are used simultaneously. Given that we applied two strategies to
the partition tiling in Figure 2.12 we expect to see four different results. However, as in both
instances we would shade the unfinished cell, we only include that result once.

B B B

B

B

B

Figure 2.12: A partition tiling with minimum and maximum point insertion applied. First result
shades the unfinished cell, the second result inserts a minimum point, and the third inserts a
maximum point. New points are highlighted in red.

As described earlier all the leaf nodes in a proof tree need to be verified. Either we can
verify a partition tiling by determining that it is not possible for that partition tiling to produce a

2.2. SET PARTITIONS 13

set partition with an occurrence of a pattern in the basis, or through recursion. To do the former,
we need to generate all the set partitions that the partition tiling could produce. As it is not
possible generate and check set partitions of all possible lengths, we want an adequate upper
bound on the length of the set partitions we will generate. We present an upper bound on this
length in the following theorem.

Theorem 2.2.1. Let:
• T be a partition tiling with basis B.
• LpT q “ |tx | x is a point cell in T u| `maxpt|p| | p P Buq.
• AvpBqďLpT q be the set partitions up to (and including) length LpT q that avoid B.
If T Ď AvpBqďLpT q then T Ď AvpBq.

Proof. Assume T Ď AvpBqďLpT q and T Ę AvpBq. Let X be a set partition on T such that
X R AvpBq. Then X contains an occurrence of a pattern in B. As X is a set partition on T , it
contains all of the point cells on T . Remove all points from X that are not point cells on T nor
a point involved in the occurrence of a basis pattern in X . We call this new set partition X 1, and
then X 1 P T but X 1 R AvpBq. However, X 1 has a length of at most LpT q so T Ę AvpBqďLpT q.
This is a contradiction. We have then that X P AvpBq and that T Ď AvpBq.

Given this upper bound on the length of set partition we need to generate for verification,
we can introduce the verification strategies is empty and set avoidance.

Strategy (Is Empty). Is empty is a verification strategy applied to a partition tiling. This
strategy determines if a partition tiling T represents the empty set by attempting to generate
the set partitions of T of length up to LpT q. If no valid set partitions are generated then T
represents the empty set and we say it is empty.

Strategy (Set Avoidance). Set avoidance is a verification strategy applied to a partition
tiling. A partition tiling T with basis B is verified if it is a subset of the class AvpBq. This
can be checked using Theorem 2.2.1.

Many of the interesting avoidance classes of set partitions that we could build combinatorial
specifications for rely on a recursion being found in the proof tree. If we use batch strategies
alone, that is, just insert columns or points, we will not arrive in a situation where a new partition
tiling we have created is one we have seen earlier in the tree. To achieve recursion we need to
introduce a means of breaking a partition tiling into smaller pieces.

Definition 2.2.6. Let T be a partition tiling, c a cell in T , and X a set partition on T . We
define cell removal, denoted X ´ c, as removing all points from X that exist in cell c in the
gridding of X on T .

To make the concept of cell removal clear, we present an example in Figure 2.13. The
shaded rows that normally would be removed are kept as a visual aid.

14 CHAPTER 2. METHODS

B

Figure 2.13: A partition tiling T , a set partition X P T , and the resulting set partition from
performing cell removal on X with the basis cell in T . The gridding lines are highlighted in
blue.

Definition 2.2.7. Let T be a partition tiling with basis B and c a cell in T . We say c is
removable if @X P T we have X ´ c P AvpBq implies X P AvpBq.

Theorem 2.2.2. Let:
• T be a partition tiling with basis B.
• c be a cell in T .
• LpT q “ |tx | x is a point cell in T u| `maxpt|p| | p P Buq.
• TďLpT q be the set partitions up to (and including) length LpT q in T .
The cell c is removable if the if the removability condition holds for all X P TďLpT q.

Proof. If c is removable then the removability conditions holds for all X P TďLpT q. Assume c is
not removable. Then there exists some X P T such that X ´ c avoids B, but X does not avoid
B. Let σ be an occurrence of a pattern in B, and let X 1 be the set partition created by removing
all points that are not point cells on T nor points involved in the occurrence σ. We have then
that |X 1| ď LpT q, and X 1 contains σ, but X 1 ´ c avoids σ. Therefore, there is always some
X 1 P TďLpT q such that the removability conditions fails if c is not removable.

Strategy (Cell Splitting). Cell splitting is a decomposition strategy applied to a partition
tiling. For a given partition tiling T , we check if each cell c in T is removable by utilizing
Theorem 2.2.2. If c is removable we return two new partition tilings. The first consists only
of the cell c, and the second is a copy of T with c shaded.

Let us consider the example seen in Figure 2.14. We can see that the resulting two partition
tilings are a single point, and a simpler partition tiling. It is easy to reason that if the pattern
being avoided is 122, the second point in the first block would not contribute to any occurrence
of the pattern. The benefit now is that the partition tiling containing a single point can be easily
verified using the set avoidance strategy, and the other is a simple enough partition tiling that an
occurrence of it is likely elsewhere in the proof tree being built, which makes recursion likely.

2.2. SET PARTITIONS 15

B B

Figure 2.14: The partition tiling T with the basis t122u on the left is decomposed via cell
splitting into the two partition tilings on the right.

The last set of strategies we will cover are inferral strategies. These are strategies used to
infer information about a partition tiling such as a condition within the tiling that cannot exist
or a condition within the tiling that must be modified for the containing proof tree to ever be
able to find a combinatorial specification for the class of set partitions being looked at.

Strategy (Empty Cell Inferral). Empty cell inferral is an inferral strategy applied to a par-
tition tiling. For a given partition tiling T , we temporarily place a point in each unfinished
cell and basis cell one at a time. If adding a point to one of these cells causes an occurrence
of a pattern in the basis of T to appear, we shade that cell.

Empty cell inferral on a partition can be seen in Figure 2.15 on the partition tiling that is
avoiding the pattern 122. The unfinished cell is inferred to be empty as we can clearly see that
placing a point in that cell would result in an occurrence of the pattern 122.

B B

Figure 2.15: A partition tiling with B “ t122u and the result of applying empty cell inferral to
it.

Strategy (Column Separation Inferral). Column separation inferral is an inferral strategy
applied to a partition tiling. For a given partition tiling T , each abstract column C is
examined to see if the bottom most basis cell u0 in C needs to exist in a different abstract
column than the remaining basis cells in C. This is done by pair-wise placement of points
in u0 and each remaining basis cell while checking for an occurrence of a pattern in the
basis of T . If for each pair-wise placement of points a pattern occurrence was found, we
say the basis cells are incompatible, and then move all the basis cells in C except u0 into a
new abstract column directly to the right of C at their same vertical positions. If the cells
are not incompatible, that is, at least two of them can exist in the same column up to single
point placement, we say they are compatible.

16 CHAPTER 2. METHODS

Proposition 2.2.1. Repeated repetition of the column separation inferral strategy on a partition
tiling will result in a partition tiling in where the basis cells in all of its abstract columns are
compatible. Furthermore, the number of applications of the strategy needed to accomplish this
is finite.

Proof. Consider the following cases for a partition tiling T :
• Case 1 - The basis cells in each abstract column of T are compatible. No further work

needed.
• Case 2 - There are one or more abstract columns in T where the basis cells are incompat-

ible. We examine the first such column and denote it with C0. After applying the column
separation inferral strategy, the number of basis cells moved to the new column C1 are
one fewer than the number of basis cells that were in C0. We now have the following sub
cases:

– One basis cell is in C1, and therefore the cells in C1 are compatible.
– The basis cells in C1 are incompatible and so we apply the column separation strat-

egy again.
– The basis cells in C1 are compatible.

We see that an abstract column with a finite number of basis cells can be converted into an
ordered set of abstract columns that have compatible basis cells in a finite number of steps as on
each application of the strategy there is one less basis cell to work with in the newly produced
column. Given that T has a finite amount of abstract columns, it follows that we can convert T
into a partition tiling in where none of its abstract column contains a set of incompatible basis
cells using a finite number of operations.

We demonstrate column separation in Figure 2.16. It is simple to reason through visual
inspection of the partition tiling in the figure that placing a point in both of the basis cells would
cause an occurrence of the pattern 1212. Movement of the top basis cell to a new column allows
us to capture the structure of two basis cells with a single point interleaved while still being able
to avoid 1212.

B

B

B

B

Figure 2.16: A partition tiling with B “ t1212u and the result of applying column separation
to it.

2.2.3 Combinatorial Specification for Non-Crossing Partitions
We describe a step by step process for finding a combinatorial specification for set partitions
avoiding the pattern 1212, often called the non-crossing partitions [7, Corollary 4.2]. The com-
binatorial specification can be seen in Figure 2.17. The figure also contains labels we will use
to reference nodes in this section. We produce the tree in the following steps:

2.2. SET PARTITIONS 17

• We begin with the root partition tiling F1. Verification strategies are not applied to this
node as it is the class we wish to find a specification for.

• Column insertion is applied to F1 to produce F2 and F3. The partition tiling F3 represents
the empty set partition denoted with E.

• Set avoidance is used to verify F3.
• Point insertion is applied to F2 which produces F4 and F5.
• Set avoidance is used to verify F5.
• Column separation inferral is applied to F4 to produce F6.
• Cell splitting is applied to F6 to produce F1 and F7. We see a recursion on F1 and consider

it verified.
• Cell splitting is applied to F7 to produce F2 and F8. We see a recursion on F2 and consider

it verified.
• Set avoidance is used to verify F8.
• The combinatorial specification has been found.

B

B E

B

B

B

B B

B B

B

F1

F2

F3

F4F6

F5

F1

F7

F2

F8

Figure 2.17: A visual representation of the combinatorial specification for non-crossing parti-
tions.

The combinatorial specification in Figure 2.17 can be converted into a system of equations
that can be solved to produce a generating function that enumerates the set partitions avoiding
1212. The process of solving this system of equations is as follows:

18 CHAPTER 2. METHODS

F1 “ F2 ` F3

F2 “ F4 ` F5

F3 “ 1

F4 “ F6

F5 “ x ¨ F1

F6 “ F1 ¨ F7

F7 “ F2 ¨ F8

F8 “ x

With the systems of equations laid out we can now begin to solve for F1 which will produce the
generating function for the set partitions avoiding 1212.

F1 “ F4 ` F5 ` 1

F1 “ F6 ` x ¨ F1 ` 1

F1 “ x ¨ F1 ¨ pF1 ´ 1q ` x ¨ F1 ` 1

F1 “ x ¨ F 2
1 ` 1

0 “ x ¨ F 2
1 ´ F1 ` 1

Finally, by application of the quadratic formula we arrive at the following generating function,
which is the generating function for the Catalan numbers.

F1 “
1´

?
1´ 4x

2x

19

Chapter 3

ComboPal

3.1 Description
ComboPal is the web application we developed for the visualization of combinatorial classes
and long term storage of combinatorial specifications. The work done on ComboPal was ini-
tially intended to be an extension of the previous work done by students at Reykjavik Univer-
sity on PermPAL [3]. Upon review of PermPAL’s code base, we decided to re-engineer the
system from the ground up such that it could handle drawing trees of any combinatorial object.
PermPAL focused exclusively on drawing proof trees for permutation patterns, and as such its
code was written to do that task specifically.

We created ComboPal with an emphasis on it being combinatorial object agnostic; that is,
its core focus was on drawing and storage functionality. ComboPal comes with a base template
for others to use when describing the combinatorial objects they wish to render trees of with
ComboPal. This design keeps ComboPal simple and well-defined in its responsibilities as it
outsources the work of describing the drawing of a combinatorial object to those that have
domain-specific knowledge.

ComboPal is able to visualize combinatorial specifications for avoidance classes of binary
strings, set partitions as well as permutations patterns. Additionally, it currently stores 5415
combinatorial specifications. The storage of these specifications is particularly valuable as some
combinatorial specifications can take days or weeks to produce on high-performance hardware.

3.2 ComboPal Technology
ComboPal frontend was created using HTML, CSS, and JavaScript. And utilized the following
libraries:

• TreantJS [8], facilitates the process of displaying a combinatorial specification in a tree
format.

• Bootstrap 4 [9], we use Bootstrap 4 for the user interface of ComboPal.
• JQuery [10], used as a utility in ComboPal.

The ComboPal backend was implemented in Python using the Flask web framework [11].
Long term storage of combinatorial specifications is accomplished through the use of MongoDB
[12], a NoSQL database.

20

21

Chapter 4

Results

We built two systems on top of CombSpecSearcher titled BinaryScope and PartiScope
which search for combinatorial specifications of avoidance classes of binary strings and avoid-
ance classes of set partitions respectively. Utilizing the strategies outlined in the earlier chapters,
these systems have had success enumerating and finding combinatorial specifications for many
of the avoidance classes of their respective combinatorial object.

The enumeration of binary strings and set partitions has been a topic of interest to many
researchers in the mathematics community. The systems we have designed has begun to be able
to automate the work done by various researchers investigating these combinatorial objects.

The tests that were performed in this section were done on a desktop computer with an Intel
i7 6700k overclocked to 4.2Ghz, and 16GB of RAM.

4.1 Binary Strings

The BinaryScope system we developed is able to find a combinatorial specification for any
avoidance class of binary strings. This results from the fact that underlying CombSpecSearcher
algorithm terminates for any avoidance class of binary strings as shown by proposition 2.1.1.
Furthermore it is possible to produce a generating function for each avoidance class of binary
strings as shown by Proposition 2.1.3.

4.2 Set Partitions

For the purposes of describing the search results we define P to be the set of all set partitions
and Pn to be the set of all set partitions of Sn “ t1, 2, . . . , nu.

PartiScope is able to find a combinatorial specification for a large number of avoidance
classes of set partitions. We attempted to find combinatorial specifications for avoidance classes
of set partitions whose basis were various subsets of the sets P1, P2, P3, P4 and their unions. In
the results we sometimes specify how many patterns from Pn were used to construct the basis.
When not specified all possible subsets of Pn are used.

For each combinatorial specification searched for we set a 60 second time limit. The result
of these searches can be see in Table 4.1. In the searches where the possible basis patterns come
from a union of Pi and Pj where i ‰ j, we forced the basis to consist of at least one pattern
from Pi and Pj .

22 CHAPTER 4. RESULTS

Set for Basis |Successful|{|Set| Percentage

P2 3{3 100%
P3 31{31 100%

P4, 1 pattern 10{15 66.6%
P4, 2 patterns 45{105 42.8%
P4, 3 patterns 208{455 45.7%
P4, 4 patterns 695{1365 50.9%
P2 Y P3 2{2 100%
P2 Y P4 2{2 100%
P3 Y P4 249{956 26%

Table 4.1: Proportion of avoidance classes of set partitions we are able to find a combinatorial
specification for

It would be expected that as we increase the amount of patterns that are in the basis of
an avoidance class that finding a combinatorial specification would become easier as the size
of the class decreases with each additional basis pattern. However, as the amount of patterns
in a basis grows, so does the time spent on doing case analysis. We are optimistic that if we
dedicated more processing time to finding the combinatorial specifications for the avoidance
classes that have multiple patterns in their basis, it would be possible to discover a combinatorial
specification for more of them.

In the case of avoidance classes with a single pattern in their basis, we believe it to be
unlikely that more processing time would produce a combinatorial specification for most of
them where a specification was not found. We conjecture that more strategies will need to be
developed in order to produce a specification for them. This stems from our experience when
finding a specification for the set partitions that avoid 1212. In order to adequately explain its
structure both the column separation strategy and cell splitting strategy needed to be present as
only then did the strategies have enough descriptive power to produce a specification for it.

4.3. CONCLUSION 23

4.3 Conclusion
Implementing BinaryScope and PartiScope on top of CombSpecSearcher allowed
us to automate a very exciting area of research. With BinaryScope we were able to automate
the process of finding a combinatorial specification for any avoidance class of binary strings and
producing a generating function for the class. The work on PartiScope has allowed us to
find combinatorial specifications for many avoidance classes of set partitions, including those
discussed in academic papers such as the class of non-crossing set partitions [6].

The success of ComboPal is demonstrated in its current daily use by the researchers of the
Permuta Triangle group. The ability to easily visualize combinatorial specifications provides an
intuitive means of understanding the output of software built on top of CombSpecSearcher.
In our own work we have found quick access to visual representations of the combinatorial
specifications we work with has afforded us the opportunity to develop strategies more effec-
tively and intuitively. ComboPal is available on the public internet and can be accessed at
http://combopal.ru.is.

4.4 Future Work
Much work remains to be done on PartiScope. There are many classes of set partitions that
it does not adequate facilities to describe. Moving forward additional strategies will need to be
created. The time complexity of the code required to generate the set partitions that have a valid
gridding on a partition tiling is very high, and as a result the verification strategies take a long
time to run when proof trees become more than 6 levels deep. Future work on PartiScope
should include designing more efficient ways of generating the set partitions that have a gridding
on a partition tiling.

Unlike with BinaryScope, we are currently unable to speak meaningfully about whether
or not a search performed by PartiScopewill ever terminate. Theoretical work remains to be
done in producing a set of strategies that is adequate to discover a combinatorial specification
for any avoidance class of set partitions, or conversely, to show that such a set of strategies
cannot exist.

Both BinaryScope and PartiScope demonstrated that CombSpecSearcher works
for combinatorial objects beyond that of permutation patterns. Interesting future work would
include examining other combinatorial objects like patterns in lattice paths and classes of com-
binatorial objects that are defined in terms of something other than avoidance.

http://combopal.ru.is/

24

25

Bibliography

[1] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani, “ECO: a methodology for the
enumeration of combinatorial objects.”, J. Differ. Equations Appl. 5, pp. 435–490, 1999.

[2] C. Bean, “Finding Structures in Permutation Sets”, Christian Bean’s PhD thesis, not yet
released.

[3] S. Viktorsson, A. Arnarsson, U. Erlendsson, and Á. Birkir, Permpal, 2017. [Online].
Available: http://permpal.ru.is/.

[4] S. Helgason and J. Robb, ComboPal, 2018. [Online]. Available: http://combopal.
ru.is/.

[5] Flajolet and Sedgewick, Analytic Combinatorics. Cambridge University Press, 2009,
pp. 57–58.

[6] V. Jelínek, T. Mansour, and M. Shattuck, “On Multiple Pattern Avoiding Set Partitions”,
ArXiv e-prints, Jan. 2013. arXiv: 1301.6509 [math.CO].

[7] G. Kreweras, “Sur les partitions non croisées d’un cycle”, Discrete Math., vol. 1, no. 4,
pp. 333–350, 1972, ISSN: 0012-365X. DOI: 10.1016/0012-365X(72)90041-6.
[Online]. Available: https://doi.org/10.1016/0012-365X(72)90041-6.

[8] F. Peručić et al., TreantJS, 2018. [Online]. Available: http://fperucic.github.
io/treant-js/.

[9] Bootstrap. [Online]. Available: https://getbootstrap.com/.

[10] JQuery. [Online]. Available: https://jquery.com/.

[11] Flask - A Python Microframework. [Online]. Available: http://flask.pocoo.
org/.

[12] MongoDB. [Online]. Available: https://www.mongodb.com/.

http://permpal.ru.is/
http://combopal.ru.is/
http://combopal.ru.is/
http://arxiv.org/abs/1301.6509
https://doi.org/10.1016/0012-365X(72)90041-6
https://doi.org/10.1016/0012-365X(72)90041-6
http://fperucic.github.io/treant-js/
http://fperucic.github.io/treant-js/
https://getbootstrap.com/
https://jquery.com/
http://flask.pocoo.org/
http://flask.pocoo.org/
https://www.mongodb.com/

26

School of Computer Science
Reykjavík University
Menntavegur 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.ru.is

www.ru.is

	Acknowledgements
	Contents
	Introduction
	CombSpecSearcher
	Strategies
	CombSpecSearcher Results
	Combinatorial Specification Example

	Methods
	Binary Strings
	Defintions and Binary Strings
	Strategies
	Enumerating Binary Strings

	Set Partitions
	Definitions and Partition Tilings
	Strategies
	Combinatorial Specification for Non-Crossing Partitions

	ComboPal
	Description
	ComboPal Technology

	Results
	Binary Strings
	Set Partitions
	Conclusion
	Future Work

	Bibliography

