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Abstract

Prior work has produced multiprocessor real-time locking protocols that ensure asymp-
totically optimal bounds on priority inversion, that support fine-grained nesting of criti-
cal sections, or that are independence-preserving under clustered scheduling. However,
while several protocols manage to come with two out of these three desirable features,
no protocol to date jointly accomplishes all three. Motivated by this gap in capa-
bilities, this thesis introduces the Group Independence-Preserving Protocol (GIPP),
the first protocol to guarantee a notion of independence preservation for fine-grained
nested locking, support fine-grained nested locking, and ensure asymptotically optimal
priority-inversion bounds. As a stepping stone, the thesis further presents the Clus-
tered k-Exclusion Independence-Preserving Protocol (CKIP), the first asymptotically
optimal non-nested independence-preserving k-exclusion lock for clustered scheduling.
Both the GIPP and the CKIP rely on allocation inheritance (a.k.a. migratory priority
inheritance) as a key mechanism for accomplishing independence preservation.
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Preface

This thesis is the result of my research into real-time locking protocols over the last
year. It is written to fulfill the graduation requirements of the Master’s of Computer
Science Program at Reykjavik University (Háskólinn í Reykjavík). The material pre-
sented herein is an expanded version of original joint work with Björn Brandenburg [43]
that has been published in the proceedings of the 32nd Euromicro Conference on Real-
Time Systems (ECRTS 2020). The use of the original work is done with the explicit
permission of both parties. In this thesis I will use the first-person singular when
presenting the contributions, whereas in the original work the first-person plural is
used; this should not be interpreted in any way to deprive the other author of his
contributions.

This thesis does not assume that the reader specializes in real-time systems, and
thus I present a thorough introduction to the background material required to make its
contributions more approachable to a graduate-level computer science audience. The
sections of the original work that contribute novel material to the real-time literature
are presented largely unchanged in this thesis with the exception of Chapters 5 and 6,
where some new contributions are introduced. All other changes to the original work
take the form of additional examples and explanations where I felt it would benefit
the reader.

iv



Acknowledgements

Conducting the research required to produce this thesis and the corresponding pa-
per [43] has allowed me to grow professionally and personally in ways I could not have
predicted beforehand. I am very thankful to have had the opportunity to conduct
novel research and contribute to the body of academic literature in computer science.

This thesis would not have been possible without the assistance and guidance of
many others. I would like to thank Björn Brandenburg of the Max Planck Institute
for Software Systems for the opportunity to study under him, and for all the guidance
he provided in learning how to produce impactful research. The unwavering support
of the faculty and staff of Reykjavik University through both my undergraduate and
graduate studies has been pivotal to my success, and I am very thankful. I would
like to thank my thesis advisor Marcel Kyas for all his help in realizing this thesis
and guiding me to its completion. My entrance into graduate studies, along with
the encouragement and advice to see it through to the end comes from my mentor
Ýmir Vigfússon; I could not be more thankful for everything he has done to help me
along the way. Finally, I’d like to express my unending gratitude to my wife Katrín
Einarsdóttir. None of this would have been possible without her kindness, love, and
support through my five years in post-secondary education. I owe all my success to
her.

v



Contents

Preface iv

Acknowledgements v

Contents vi

List of Figures viii

List of Tables ix

List of Abbreviations x

List of Symbols xi

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Real-Time Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Fixed-Priority Scheduling . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Job-Level Fixed-Priority Scheduling . . . . . . . . . . . . . . . . 9
2.2.3 Multiprocessor Real-Time Scheduling . . . . . . . . . . . . . . . 11

2.3 Real-Time Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Shared Resource Model . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Priority Inversion Blocking . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.1 The Priority Inheritance Protocol . . . . . . . . . . . . . . . . . 16
2.4.2 Analysis Methods for Priority Inversion Blocking . . . . . . . . 18
2.4.3 Progress Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Independence Preservation . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5.1 The O(m) Independence Preserving Locking Protocol . . . . . . 21

2.6 Nested Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6.1 The Real-Time Nested Locking Protocol . . . . . . . . . . . . . 24
2.6.2 The Replica-Request Donation Global Locking Protocol . . . . . 26

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Nested Independence Preservation 30
3.1 Outer-Lock Independence Preservation . . . . . . . . . . . . . . . . . . 31
3.2 Group Independence Preservation . . . . . . . . . . . . . . . . . . . . . 33

vi



4 The GIPP 35
4.1 The CKIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 An Independence-Preserving RSM . . . . . . . . . . . . . . . . . . . . . 39
4.3 Structure and Analysis of The GIPP . . . . . . . . . . . . . . . . . . . 40

5 Fine-Grained Pi-Blocking Analysis 42

6 Schedulability Experiments 48
6.1 UAP Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2 HAAP Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 General Performance . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2 Impact of Latency-Sensitive Tasks . . . . . . . . . . . . . . . . . 53
6.3.3 Global Token-Lock Bottleneck . . . . . . . . . . . . . . . . . . . 53
6.3.4 Performance under High Resource-Contention . . . . . . . . . . 54
6.3.5 Performance under Varying Access Patterns . . . . . . . . . . . 55

6.4 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusion 56

Bibliography 57

A Full Results for Schedulability Experiments 62
A.1 UAP Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.2 HAAP Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . 98

vii



List of Figures

2.1 Uniprocessor schedule for a single task that does not access any shared
resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Uniprocessor RM schedule of three tasks. . . . . . . . . . . . . . . . . . . . 9
2.3 Uniprocessor EDF schedule of three tasks. . . . . . . . . . . . . . . . . . . 10
2.4 G-EDF schedule that demonstrates EDF’s non-optimality w.r.t. utilization. 12
2.5 Life cycle of a shared resource request. . . . . . . . . . . . . . . . . . . . . 14
2.6 Outermost critical section versus an outermost request. . . . . . . . . . . . 15
2.7 Example of priority inversion under EDF scheduling. . . . . . . . . . . . . 16
2.8 Uniprocessor RM schedule of resource sharing under the PIP. . . . . . . . 17
2.9 G-EDF schedule that demonstrates the fundamental lower-bound on s-

oblivious pi-blocking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 The OMIP’s queuing structure. . . . . . . . . . . . . . . . . . . . . . . . . 22
2.11 Life cycle of a shared resource request under the RNLP. . . . . . . . . . . 24
2.12 The RNLP’s queuing structure. . . . . . . . . . . . . . . . . . . . . . . . . 25
2.13 Multiprocessor schedule of tasks competing for shared resources under the

RNLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.14 Life cycle of a shared resource request under RRPD. . . . . . . . . . . . . 28

3.1 P-EDF schedule that serves as motivation for a formal definition of nested
independence preservation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 DAG representation of dependence among shared resources. . . . . . . . . 31
3.3 G-FP schedule to demonstrate non-optimality of outer-lock independence

preservation w.r.t. s-oblivious pi-blocking. . . . . . . . . . . . . . . . . . . 33
3.4 Undirected-graph representation of association among shared resources. . . 34

4.1 The CKIP’s queuing structure. . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 The GIPP’s queuing structure. . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Wide resource groups versus deep resource groups. . . . . . . . . . . . . . 50
6.2 General performance of the GIPP compared to the OMIP and the RNLP

in the large-scale experiments. . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 The effect latency-sensitive tasks have on schedulability in the large-scale

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 The impact of a global token-lock bottleneck seen in the large-scale exper-

iments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.5 The impact high resource-contention has on schedulability in the large-scale

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.6 The effects of different resource-access patterns on schedulability in the

large-scale experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

viii



List of Tables

6.1 Parameters values used in the UAP experiments. . . . . . . . . . . . . . . 51
6.2 Parameters values used in the HAAP experiments. . . . . . . . . . . . . . 52

ix



List of Abbreviations

AI Allocation Inheritance
AI-RSM Allocation Inheritance Resource Satisfaction Mechanism
CA-RNLP CKIP-AI-RSM - RNLP
C-EDF Clustered Earliest-Deadline First
CKIP Clustered k-Exclusion Locking Protocol
DM Deadline Monotonic
EDF Earliest Deadline First
FIFO First-In First-Out
FMLP Flexibile Multiprocessor Locking Protocol
FP Fixed Priority
G-EDF Global Earliest-Deadline First
GIPP Group Independence-Preserving Protocol
GLPK GNU Linear Programming Kit
G-RM Global Rate-Monotonic
HAAP Highly Asymmetric Access Pattern
JLFP Job-Level Fixed Priority
JRPD Job-Release Priority Donation
MBWI Multiprocessor Bandwidth Inheritance Protocol
MrsP Multiprocessor Resource Sharing Protocol
OMIP O(m) Independence-Preserving Protocol
PCP Priority Ceiling Protocol
P-EDF Partitioned Earliest-Deadline First
PIP Priority Inheritance Protocol
RM Rate Monotonic
RNLP Real-Time Nested Locking Protocol
R2DGLP Replica-Request Donation Global Locking Protocol
RRPD Replica-Request Priority Donation
RSM Resource Satisfaction Mechanism
RTOS Real-Time Operating System
s-aware analysis Suspension-Aware Analysis
s-oblivious analysis Suspension-Oblivious Analysis
s-oblivious pi-blocking Suspension-Oblivious Priority-Inversion Blocking
UAP Uniform Access Pattern
WCET Worst-Case Execution Time

x



List of Symbols

N The set of natural numbers.
m Number of processors in a given system.
n Number of tasks in a given system.
Pi Denotes the ith processor.
τ Set of tasks in the system.
τk Set of tasks in cluster Ck.
Ti Task i.
Ti(x,y) Task i with ei = x and pi = y.
Ji An arbitrary job of Ti.
Ji,k The kth job of Ti.
ai,k The arrival (release) time of Ji,k.
fi,k The completion time of Ji,k.
ei Worst-case execution time of Ti.
pi Period of Ti - the minimum arrival separation between jobs.
di The relative deadline of Ti.
ui Utilization of Ti.
U Total utilization of all tasks in the system.
BP(Ji, t) The base priority of Ji at time t.
EP(Ji, t) The effective priority of Ji at time t.
HEP(Ji, t) Predicate that is true when Ji is among the c highest effective-

priority tasks in C(Ti) at time t.
Bi The fixed priority of Ji.
Ri The maximum response time of Ti.
c Number of processors in a cluster.
Ck Cluster k.
C(Ti) Ti’s home cluster.
q Number of shared resources in Γ.
Γ Set of shared resources in the system.
Γ′ Set of currently-held shared resources in the system.
`a Shared resource a.
γi The set of shared resources accessed by Ti.
R A resource request.
Ni,a The maximum number of requests Ji makes for the shared resource

`a.
Ni The maximum number of shared resource requsts Ji.
� Denotes the relation for the partial ordering on the shared resources

in Γ.
Li,a Length of Ti’s longest outermost critical section that begins with an

outermost request for `a.

xi



Lmax
i Length of Ti’s longest outermost critical section.

Lmax Length of longest outermost critical section among all tasks in τ .
bi,a The maximum s-oblivious pi-blocking any job of Ti incurs due to

requests for `a.
bi The maximum s-oblivious pi-blocking any job of Ti incurs.
GQa The OMIP’s global FIFO queue for `a.
FQa,k The OMIP’s local FIFO queue for `a in Ck.
PQa,k The OMIP’s local priority queue for `a in Ck.
ts(Ji) The timestamp recorded when Ji acquires a token to compete for

shared resources.
RQa The RNLP’s RSM priority queue for `a.
hd(a) The job at the head of RQa while competing for shared resources

under the rules of an RSM.
[`a]

ol The set of resources `a depends on with respect to outer-lock inde-
pendence preservation.

Dol
i The set of resources Ti depends on with respect to outer-lock inde-

pendence preservation.
◦ Symmetric binary relation on shared resources.
∼ The transitive closure of ◦.
g(`a) The set of resources `a is associated with.
Di The set of resources Ti is associated with.
G The set of all resource groups in the system.
gi Group i.
r Number of resource groups (under group independence preserva-

tion).
KQa The CKIP’s FIFO queue for replicas of `a.
sr(Ji, t) The set of resources that Ji holds at time t.
Ai,a,t The set of jobs that can prevent Ji from acquiring `a in the AI-RSM

at time t.
λx Token for group x.
Λ Set of the GIPP’s replicated group tokens.
θix Upper-bound on the maximum number of jobs of Tx that overlap

with Ji.
Ox,y The yth outermost critical section of Tx.
LOx,y The length (in the absence of blocking of suspensions) of the yth

outermost critical section of Tx.
Sx,y The set of shared resouces accessed by Ox,y.
Ox(g) The set of outermost critical sections of Tx that pertain to resources

in group g.
XR
x,y,v The blocking fraction for the RSM blocking Ji incurs due to the vth

overlapping instance of Ox,y.
XT
x,y,v The blocking fraction for the token blocking Ji incurs due to the vth

overlapping instance of Ox,y.
τ ′k Set of tasks in cluster Ck except Ti (i.e., τk \ {Ti}).
φi,g The number of times Ji issues an outermost request for a resource

in group g.
βk,g The number of tasks in Ck that request a resource in group g.
Wi,g Upper-bound on the number of times Ji must wait for a token of

group g.

xii



Fi(s) The number of outermost critical sections of Ti which need resources
that the RSM may have to withhold due to other jobs holding re-
sources in the set of shared resources s.

Si(g) The set of all combinations of resources in group g acquired by tasks
other than Ti.

symr(Ti, Tk) The request symmetry ratio of Ti and Tk.

xiii



xiv



Chapter 1

Introduction

A real-time locking protocols aims to arbitrate mutually-exclusive access to shared
resources (e.g., network interface cards, shared memory, etc.) such that the time
required to acquire a shared resource has provably sound upper-bounds. In contrast,
traditional or “non-real-time” locking protocols work on the assumption that requests
for shared resources will be satisfied “quickly enough”, and guarantees are expressed in
terms of “fairness” and bounded-overtaking.

From a practical point of view, any effective multiprocessor real-time locking pro-
tocol should inarguably avoid some obvious pitfalls by satisfying the following require-
ments.

REQ1 Non-conflicting accesses to different resources should not be needlessly seri-
alized.

REQ2 Tasks should not be delayed due to contention for resources they do not
access.

REQ3 A real-time locking protocol should not make it impossible to provision latency-
sensitive tasks that are carefully designed to not require any shared resources
(such as critical interrupt handlers with stringent sub-millisecond deadlines).

REQ4 Worst-case blocking should not be exponential in the number of processors,
number of tasks, nor number of held resources.

It is not difficult to see how a protocol that fails to meet these requirements would
result in costly and inefficient over-provisioning. It may thus come as a surprise that
no multiprocessor real-time locking protocol in the published literature satisfies all four
properties!

The reason, however, is all the more understandable: these innocuous-looking re-
quirements translate to well-known real-time locking protocol properties that are dif-
ficult to ensure by themselves, let alone jointly in a single protocol. In particular,
REQ3 rules out any locking protocol that relies on the non-preemptive execution of
critical sections, a trait of virtually all spin-lock protocols [11]. Furthermore, REQ1
implies that a protocol must support fine-grained nested locking [7, 48, 53]—that is,
tasks must be able to incrementally lock additional resources while already holding
some other shared resources—because the alternative, namely coarse-grained group
locking [8], serializes even trivially non-conflicting requests for resources in the same
group. Fine-grained nested real-time locking, however, is a notoriously difficult prob-
lem [7, 11, 48], and easily gives rise to blocking bounds that are exponential in the
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number of simultaneously acquired resources [11, 26, 48]—it is a fundamental algorith-
mic challenge to ensure both REQ1 and REQ4 in a single protocol. The only known
protocol to surmount this challenge is Ward and Anderson’s Real-Time Nested Locking
Protocol (RNLP) [51, 53]. In fact, the RNLP famously solves the problem while en-
suring asymptotically optimal bounds on priority inversion blocking (pi-blocking) [14,
53].

The RNLP, in turn, does not satisfy REQ2. Specifically, as is discussed in more
detail in Section 2.6.1, the RNLP relies on a token lock that regulates contention for
shared resources, an ingenious element of the RNLP’s design that ensures its asymp-
totic optimality. However, in its configuration for suspension-based locking (under
“suspension-oblivious analysis,” see Section 2.4.2), this token lock becomes a global
bottleneck that causes tasks to delay each other even if they do not share any re-
sources.

To satisfy REQ2 and REQ3, a locking protocol must temporally isolate tasks
from each other when they do not access the same resources, which is known as in-
dependence preservation [9], a concept I discuss in detail in Section 2.5. The only
protocol to date to realize independence preservation for clustered scheduling is the
O(m) Independence-Preserving Locking Protocol (OMIP) [9]. However, the OMIP fails
to satisfy REQ1 as it can realize nested locking only through group locks—and if fine-
grained locking is permitted under the OMIP, it fails to satisfy Requirement REQ4
due to its FIFO (First-In First-Out) queuing structure, which gives rise to exponential
worst-case blocking [48].

Seemingly, the satisfaction of one of the four requirements comes at the cost of
another. Is this a fundamental limitation? Is it perhaps impossible to satisfy all
four requirements at once? As I show in this thesis, the answer to these questions is
no—it is in fact possible to combine fine-grained nesting, independence preservation,
and asymptotically optimal pi-blocking in a single protocol, which I demonstrate by
constructing the first such protocol.

1.1 Related Work

The Priority Inheritance Protocol (PIP) [24, 42, 44] provides independence preserva-
tion, but only on uniprocessor or globally-scheduled systems, and the multiprocessor
variant [24, 56] does not support nested critical sections. The Flexible Multiprocessor
Locking Protocol (FMLP) [8] likewise is independence-preserving only under global
scheduling, and only supports group locks [8, 56]. The Multiprocessor Bandwidth
Inheritance Protocol (MBWI) [26, 27] and the Multiprocessor Resource Sharing Pro-
tocol (MrsP) [19] both allow for fine-grained nested locking. Unfortunately, they are
subject to the exponential blow-up in blocking times described by Takada and Saka-
mura [48]. Several variants of the RNLP [51, 53] have been introduced in recent years
to enable reader-writer synchronization [52], to provide contention-sensitive pi-blocking
bounds [32], and to reduce implementation overheads in the locking protocol itself by
means of a fast path [39] and lock servers [40]. However, none of these variants removes
the algorithmic bottleneck of a single, shared token lock. For further discussion of the
larger area of multiprocessor real-time locking protocols, I refer the interested reader
to a recent comprehensive survey [11].
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1.2 Contributions
The contributions are as follows. First, I examine what it means to be independence-
preserving in the presence of nested locking (Chapter 3), and the ensuing implica-
tions on asymptotic pi-blocking bounds (Section 3.1). The main contribution is the
Group Independence-Preserving Protocol (GIPP), the first asymptotically optimal,
independence-preserving, real-time fine-grained nested locking protocol for clustered
scheduling under suspension-oblivious analysis (Chapter 4). In other words, the GIPP
is the first multiprocessor real-time locking protocol that meets all of the desirable re-
quirements REQ1–REQ4. To realize the GIPP, I develop and analyze a novel Clus-
tered k-Exclusion Independence-Preserving Protocol (CKIP), an asymptotically opti-
mal independence-preserving k-exclusion lock for clustered scheduling (Section 4.1).
Lastly, I provide a fine-grained pi-blocking analysis of the GIPP using a state-of-the-
art blocking analysis method based on linear programming (Chapter 5), and present
an empirical evaluation that shows that the GIPP performs favorably in comparison
to both the OMIP and the RNLP across a wide range of workloads (Chapter 6).



Chapter 2

Background

The main contribution of this thesis and the original work [43] is theGroup Independence-
Preserving Protocol (GIPP), the first asymptotically optimal independence-preserving
fine-grained nested locking protocol, which is introduced in Chapter 4. The goal of
this chapter is to provide the reader with the necessary background on real-time sys-
tems and real-time locking to understand the construction of the GIPP and its novel
contribution to the literature on real-time locking. The concepts are presented in such
an order that the reader benefits from reading the chapter linearly, as most notions
build on previously introduced ones.

To begin with I introduce the reader to the sporadic task model [5, 38], a widely used
model for modeling systems of real-time tasks. I will subsequently use the sporadic
task model to introduce the reader to real-time scheduling for uniprocessor systems
and multiprocessor systems, and present a brief review on real-time locking as a whole.
Finally I will provide a thorough review of the real-time locking protocols relevant to
this thesis.

2.1 System Model

In this thesis I use the sporadic task model , a relaxation of the periodic task model [37],
to model systems of hard real-time tasks.

A system is comprised of a set of n tasks τ = {T1, . . . , Tn} to be scheduled on m
identical processors P1, . . . , Pm. Each task Ti is executed as a series of jobs . To build
an intuition for this, one can think of a task as an infinite loop where each of its jobs
is an iteration of the loop. The kth job of Ti is denoted with Ji,k where k ∈ N. When
it is not necessary to refer to a specific job of Ti I will use the common practice of
using Ji to refer to an arbitrary job of Ti. Each task is characterized by the following
parameters:

• Arrival Time ai,k is the time that Ji,k first becomes available for execution.
Arrival time is also known as release time in the absence of release jitter. I will
use the terms arrival time and release time interchangeably as I do not consider
release jitter in this thesis.

• Completion Time fi,k is the time that Ji,k completes its execution.

• Worst-Case Execution Time (WCET) ei is the upper-bound on the maxi-
mum execution time of an arbitrary job of Ti.
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• Period pi is the minimum arrival time separation between jobs of Ti.

• Relative Deadline di is the deadline of Ji relative to its arrival time. For
example, if di = 5 then Ji has five time units to complete its execution relative
to its arrival time before a deadline miss occurs.

• Utilization ui = ei/pi is the maximum fraction of processor time spent executing
Ti.

As the just defined model would suggest, this thesis focuses on the use of sporadic
tasks. To harness a bit more of an intuition for the term sporadic, consider the follow-
ing. Real-time tasks can be classified as either periodic or aperiodic. Jobs of a periodic
task are released at a constant rate (i.e., the task’s period), whereas jobs of an aperi-
odic task do not necessarily have a regular rate that they are released at. Coming back
to the term sporadic, an aperiodic task where the arrival time between two jobs is at
least the task’s period, but may be more during runtime, is called a sporadic task.

The relation between a task’s period and its deadline can also be used to classify
tasks. When classifying tasks in this manner there are three ways to do so. A task Ti is
an implicit deadline task when pi = di, a constrained deadline task when pi ≤ di, and
a arbitrary deadline task otherwise. The deadline types of a task set will determine
how the task set is analyzed, scheduled, and what guarantees can be made about it.
In this thesis I assume tasks have implicit deadlines, though the derived results do
not depend on this assumption. When discussing implicit deadline tasks I will use the
notation Ti(x, y) to denote a task Ti with ei = x and pi = di = y.

Deriving WCETs is most often not a trivial endeavor, as the WCET of a task
will depend on a number of factors like the underlying system architecture, choice
of programming language, and choice of operating system. In practice, WCETs are
empirically derived, though tools to aid in determining WCETs are available. For
example, static analysis tools like the aiT WCET Analyzer [2] have been developed to
compute these values offline. However, the use of such tools are out of the scope of
this thesis, and I assume that the WCET of each task is known.

During runtime a job is said to be pending from the time it arrives until it completes.
While a job is pending, it is in one of two states: a ready job can be scheduled (i.e.,
executing) on a processor, whereas a suspended job cannot. I assume that jobs do
not self-suspend, and that all suspensions are a result of interactions with a locking
protocol; I discuss locking protocols in Section 2.3.

I now provide an example of real-time scheduling using this model in Fig. 2.1, both
to provide an intuition for the concepts introduced so far, and to introduce the visual
format used throughout this thesis to represent real-time schedules. The example
consists of a single task T1(3, 5) executing on a uniprocessor system (i.e., m = 1). The
y-axis uses the common notation of denoting the jobs of Ti with Ji, and the x-axis
denotes time measured in indivisible units. The following is observed in the schedule:

• 5 jobs of T1 are released in the time interval [0, 21).

• At times 5, 10, 15, 20 a double-headed arrow denotes the release time of J1,k and
the deadline of J1,k−1.

• Each job executes for e1 time units and completes 2 time units before its deadline.
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• P1 idles in the time interval [f1,k, a1,k+1), i.e., the time between the completion
of one job and the arrival of the next.

• J1,k is ready between in the time interval [a1,k, f1,k).

• T1’s utilization is u1 = 3/5 = 0.6, i.e., T1 consumes 60% of P1’s capacity.

• None of the jobs suspend; they are all ready during the time intervals they are
pending.
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Figure 2.1: A uniprocessor schedule for the task set τ = {T1} where p1 = 5 and e1 = 3.

Now that I have given a brief overview of the sporadic task model, the necessary
background to discuss real-time scheduling has been established. I present a review of
real-time scheduling in the following section.

2.2 Real-Time Scheduling

Given a system of m identical processors and n tasks, where m,n ∈ N, is it possible
to schedule the tasks on the processors such that no task misses a deadline? This is
one of the primary questions the study of real-time scheduling focuses on. For hard
real-time systems, which this thesis focuses on, missing a deadline is equivalent to
system failure. The literature on hard real-time scheduling is vast, but in one way or
another the goal is to at least answer this question, albeit under a myriad of different
assumptions. In this section I present a brief introduction to real-time scheduling. I
make the common assumption of an idealized system that has no system overheads
(e.g., cache misses, TLB flushes, context switching, etc.), and that at most one task
can be scheduled on a processor at any given time. I use Liu and Layland’s notion
of a scheduling algorithm [37], but I separate the logic of assigning priorities from the
act of using said priorities to assign ready jobs to the processors. The following two
definitions reflect this separation of responsibilities.

Definition 2.2.1. A priority-driven scheduling algorithm is a set of rules that deter-
mine the task(s) to be executed at time t by means of assigning priorities to the tasks
in the system.
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The priorities assigned to tasks (and therefore their jobs) are assumed to be unique,
with any ties broken in favor of lower-indexed tasks. A job Ji has both an effective
priority and a base priority. At any point in time t the scheduling algorithm deter-
mines Ji’s base priority, denoted with BP(Ji, t). Ji’s effective priority, denoted with
EP(Ji, t) may change during its execution due to interactions with a locking proto-
col. The influence a locking protocol has on a job’s effective priority is discussed in
Section 2.3, but the concept is introduced here for the sake of consistent notation and
terminology. Unless explicitly mentioned otherwise, the reader should assume that
BP(Ji, t) = EP(Ji, t). Finally, let HEP(Ji, t) be a predicate that indicates whether Ji
is among the m highest effective-priority pending jobs at t.

Definition 2.2.2. A scheduler assigns the m highest effective-priority ready jobs at
time t to the m processors, i.e., job Ji is scheduled by the scheduler if HEP(Ji, t).

It is important to make the distinction between a scheduler and a scheduling al-
gorithm; a scheduler implements a scheduling algorithm. Scheduling algorithms are
high-level algorithmic concepts and do not make assumptions about the capabilities of
the underlying system, whereas a scheduler is bounded by the technological capabili-
ties of the system it is developed for. Thus, it can be the case that two schedulers that
implement the same scheduling algorithm can vary greatly in design and performance.
I assume all schedulers are “perfect” in that they take zero time to execute and are
free of any real-world system constraints.

Definition 2.2.3. For a given task set τ and for all t, a schedule is an assignment of
the tasks in τ to the processor(s) in the system at time t.

Definition 2.2.4. A schedule is feasible if all tasks can complete while meeting their
constraints (e.g., not missing a deadline).

Definition 2.2.5. A task set τ is schedulable if there exists at least one scheduling
algorithm that can produce a feasible schedule.

For the sake of simplicity and intuition, I will first focus on the uniprocessor case
(i.e., wherem = 1) before discussing multiprocessor scheduling. In an idealized system,
it is intuitively true that a necessary condition for schedulability (i.e., the property of
being schedulable) is that the tasks in the system do not require more processor time
than is available. The following formalizes this necessary condition.

U ≤ 1 (2.1)

where the total utilization U of a task set is defined as follow:

U ,
n∑
i=1

ui (2.2)

It is evidently true that Eq. (2.1) is a necessary condition for schedulability. Oth-
erwise, it would need to be the case that a processor could schedule at least two tasks
at the same time, which contradicts our basic assumption that only one task can be
scheduled on a processor a time. However, not all scheduling algorithms can schedule
task sets with U ≤ 1, as we will see shortly.
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2.2.1 Fixed-Priority Scheduling

Under Fixed-Priority (FP) scheduling the base priorities of tasks are calculated offline
and never change during their execution. This is in contrast to scheduling schemes I
will discuss later where base priorities can change at runtime. In real-world systems,
FP scheduling benefits from simplicity of implementation and low-overheads as the
the scheduler never needs to calculate priorities during the execution of the system. In
this section I will review the Rate Monotonic (RM) scheduling algorithm introduced
by Liu and Layland in their seminal paper [37]. They assume the following about a
task set τ :

• All tasks are periodic with implicit deadlines.

• Jobs are released at period start.

• Tasks do not self-suspend.

• Tasks are independent (e.g., no resource sharing, etc.).

• Tasks have bounded execution time (i.e., WCETs).

• Negligible system overheads.

Under RM scheduling tasks are assigned base priorities offline that do not change.
This means that each job of a given task Ti executes with the same base priority.
For this reason I use Bi as a short-hand to denote the base priority of a Ji at any
point in time. The base priority of a task is inversely proportional to its period. Thus
Bi > Bj ⇐⇒ pi < pj. For tasks with equal periods, consistent tie-breaking is realized
by assigning the task with the lower-index the higher-priority. Fig. 2.2 depicts a RM
schedule of the task set τRM = {T1(1, 4), T2(2, 5), T3(1, 8)} on m = 1 processors. It
follows from the definition of τRM that B1 > B2 > B3. As tasks are independent
(and therefore do not interact with a locking protocol) their base priority and effective
priority never differ.

RM scheduling is an example of a scheduling algorithm where the total utilization
check in Eq. (2.1) is necessary, but not sufficient, i.e., a task set with U ≤ 1 is not
guaranteed to be schedulable under RM scheduling; this is important to be aware
of given the prevalence of RM scheduling in real-time systems. Liu and Layland
introduced the following sufficient condition for the schedulability of periodic implicit-
deadline tasks on a uniprocessor system [37].

Theorem 2.2.1 ([37, Theorem 4]). A task set that conforms to Liu and Layland’s
task set assumptions is schedulable under RM scheduling on a single processor if U ≤
n(21/n − 1).

As n→∞, the bound n(21/n− 1) approaches ln(2) (which is approximately 0.69).
This leaves a considerable gap between the sufficient condition for RM schedulability,
and the necessary condition of U ≤ 1. An exact schedulability test is required when
ln(2) < U ≤ 1.

Joseph and Pandya introduced a necessary and sufficient schedulability test [33]
for constrained deadline task sets (and therefore implicit deadline task sets as well)
scheduled under RM scheduling on a uniprocessor system. To perform the test the
maximum response time of each Ti ∈ τ must be calculated. The maximum response
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Figure 2.2: A uniprocessor RM schedule of the task set τRM. At any time t the ready
job (if any) with the highest-effective priority is scheduled on P1.

time of Ti, denoted with Ri, is an upper-bound on the maximum interval in time
between the release of a job Ji,k and the completion of Ji,k. Under this test τ is
schedulable iff ∀1≤i≤n Ri ≤ di. This intuitively holds as a task set that misses no
deadlines is clearly schedulable. Unlike the schedulability test in Theorem 2.2.1, this
schedulability test does not have a closed-form calculation as the maximum response
times of the tasks are calculated via fixed-point iteration. Let hp(i) = {Tj | Bj > Bi}.
The maximum response time of each task is then calculated as follows.

Rk+1
i = ei +

∑
∀j∈hp(i)

⌈
Rk
i

pj

⌉
· ej (2.3)

To provide some intuition for what is happening here, Ti’s worst-case response time
Ri is increased by the maximum possible time that higher-priority tasks can delay the
execution of Ti. This propagation starts with the highest-priority task, as its execution
is never delayed by any other tasks. Once the response time values have stabilized (i.e.,
they no longer change with further iterations), then the worst-case response time for
each tasks is known, and the schedulability test can be applied.

As a final note on RM scheduling, it is optimal in the sense that if task set that
satisfies Liu and Layland’s assumptions can be scheduled under FP scheduling, then
it can be scheduled under RM scheduling [37].

2.2.2 Job-Level Fixed-Priority Scheduling

Unlike FP scheduling, Job-Level Fixed-Priority scheduling (JLFP) scheduling allows
for the reassignment of priorities between job boundaries, that is, different jobs of the
same task may have different base priorities, but the base priority of a job remains
constant from the time it arrives until the time it finishes. JLFP scheduling algorithms
can also be classified as dynamic scheduling algorithms as scheduling decisions are
based on dynamic parameters that can change during runtime. FP scheduling does
fall under the class of JLFP schedulers as the base priority of a job never changes, but
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in this section I will focus on a scheduling algorithm were base priorities do change
between job boundaries. Specifically, I will provide a brief introduction to Earliest
Deadline First (EDF) scheduling.

Under EDF scheduling, the job with the earliest (i.e., nearest) deadline is scheduled
at any point in time. Each job Ji,k is assigned its base priority upon arrival at ai,k,
and remains constant until fi,k. EDF is then dynamic in the sense that a job’s base
priority depends on the deadlines of other tasks at runtime. Fig. 2.3 depicts an EDF
schedule of the task set τEDF = {T1(1, 4), T2(3, 5), T3(1, 8)} on m = 1 processors.
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Figure 2.3: A uniprocessor EDF schedule of the task set τEDF. At any time t the ready
job (if any) with the nearest deadline is scheduled on P1.

On uniprocessor systems, EDF scheduling is optimal with respect to processor
utilization. That is, Eq. (2.1) is both a necessary and sufficient condition.

Theorem 2.2.2 ([37, Theorem 7]). A sporadic task set that conforms to Liu and Lay-
land’s task sets assumptions is schedulable under EDF scheduling on a single processor
iff U ≤ 1.

EDF scheduling benefits from the simple schedulability test in Theorem 2.2.2 and
optimality with respect to processor utilization. However there are two drawbacks to
consider with real-world systems in mind. Unlike FP scheduling, an EDF scheduler
calculates priorities at runtime and can thus incur larger scheduling overheads than a
FP scheduler. EDF scheduling also performs poorly when jobs overrun their deadlines
as the execution of newly arriving jobs can be pushed further and further out. In
contrast, under FP scheduling higher-priority jobs will never be delayed due to the
execution of lower-priority jobs (when tasks are independent of each other), but at
the possible consequence of completely starving lower-priority jobs of processor time
when jobs overrun their deadlines. Which of these scheduling algorithms is “better”
will depend on the specific application.

This concludes my review on uniprocessor real-time scheduling. The next section
builds upon the concepts introduced so far and gives a brief introduction to real-time
scheduling in multiprocessor systems.
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2.2.3 Multiprocessor Real-Time Scheduling

Multiprocessors (e.g., multi-core processors) are ubiquitous today due to availability,
cost-efficiency, increasing demand for processing power [1], and the thermal barriers
that arise as clock speeds increase [50]. In this section I provide a brief introduction to
multiprocessor real-time scheduling. The first place to start is with extending the two
scheduling algorithms discussed so far (RM and EDF) to multiprocessor scheduling. I
will use the terms Global EDF (G-EDF) and Global RM (G-RM) when applying EDF
and RM scheduling to m > 1 processors. Under G-EDF and G-RM scheduling, the m
highest-priority ready jobs are scheduled on the m processors at any given time; this
is exactly what happens in the uniprocessor case where m = 1.

G-EDF and G-RM do not necessarily need to be applied to every processor in the
system. In this thesis I assume the m processors are grouped into disjoint subsets of
size c called clusters . For the sake of simplicity I assume that m = c · k where k ∈ N;
thus, there are m

c
clusters. I denote the kth cluster with Ck. Each task Ti is assigned

to a single cluster offline called its home cluster, which is denoted with C(Ti). Clusters
function independently from each other with respect to scheduling; that is, each cluster
“behaves” as if it comprised the entire set of processors. For this reason, it important to
note that from this point on the predicate HEP(Ji, t) now reflects whether Ji is among
the c highest-effective priority jobs at time t in C(Ti); an obvious generalization on
the predicate’s original formulation. There are three ways to classify multiprocessor
scheduling based on the value of c. The following outlines the three cases and their
associated terminology.

• Global Scheduling All processors belong to a single cluster (i.e., c = m), and
the m highest-priority (as determined by the scheduling algorithm) ready jobs
are scheduled on the m processors at any point in time.

• Partitioned Scheduling Each cluster contains a single processor (i.e., c = 1).
This means that each cluster can run a uniprocessor scheduling algorithm, as
clusters are scheduled independently of each other.

• Clustered Scheduling This is the general case where 1 ≤ c ≤ m. The tasks
in each cluster are scheduled with a global scheduling algorithm applied to the
processors in that cluster.

From this point on in this thesis I will focus on clustered scheduling as it is the
general case; anything demonstrated for clustered scheduling also applies to global
and partitioned scheduling. I primarily assume the use of Clustered EDF (C-EDF)
scheduling in this thesis; under C-EDF each cluster is scheduled independently with a
G-EDF scheduler.

Before proceeding further, one might ask themselves what splitting processors up
into clusters accomplishes. In a globally scheduled system a single run queue (i.e.,
queue of jobs to be scheduled) is maintained; this single run queue could become a
bottle neck depending on the task set, hardware, and underlying architecture. How-
ever, multiprocessor systems come with drawbacks, which I will discuss next.

Intuitively one might think that introducing additional processors to a system
would always make the goal of scheduling task sets easier as there would be more
processor capacity to do so. For example, under uniprocessor EDF an independent task
set with U ≤ 1 is schedulable, so one might assume an independent task set with U ≤ 4
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would be schedulable under G-EDF scheduling on a system with m = 4 processors.
This is unfortunately not true. Consider a task set τ = {T1(3, 6), T2(3, 6), T3(5, 7)}
with U ≈ 1.71 scheduled on m = 2 processors under G-EDF scheduling; a visual
example of this is depicted in Fig. 2.4. J1 and J2 are scheduled first as they both have
an earlier deadline than J3. Once J1 and J2 complete it is not possible to schedule J3
such that it does not miss its deadline. This clearly demonstrates the non-optimality
of G-EDF w.r.t. to processor utilization, as τ is not schedulable despite U ≤ 2.
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Figure 2.4: A sporadic task set τ = {T1(3, 6), T2(3, 6), T3(5, 7)} with U ≈ 1.71 sched-
uled on m = 2 processors under G-EDF scheduling. J3 misses a deadline despite that
the total processor capacity is greater than the task set’s total utilization.

The example in Fig. 2.4 can be taken further. Dhall and Liu demonstrate that it
is possible to construct a task set with total utilization arbitrarily close to 1 that is
unschedulable under both G-EDF and G-RM scheduling, irrespective of the number
of processors in the system [23].

I review one last consideration one needs to make when scheduling a task set on a
multiprocessor system. As mentioned earlier, tasks are statically assigned to clusters
offline, but how should these assignments be determined? In the general case this
reduces to a bin-packing problem, which is known to be NP-Hard [34]. In practice
different heuristics like First-Fit Decreasing and Worst-Fit Decreasing are used, but a
thorough discussion of assigning tasks to clusters is out of the scope of this thesis.

To summarize, multiprocessor systems can offer benefits such as fault tolerance,
isolation, and additional processing power. These benefits come with scheduling trade-
offs. Typical uniprocessor scheduling algorithms like EDF and RM lose their respec-
tive notions of optimality. Optimal scheduling algorithms do exist for multiprocessor
systems, such as PD2 [47], but they come with the consequence of relatively high com-
plexity and non-trivial overheads [13, 17]. For a more comprehensive review of both
uniprocessor and multiprocessor real-time scheduling, I refer the reader to Sha et al.’s
(slightly dated) review [45] on the key developments in the history of real-time schedul-
ing, and Davis and Burns’s survey [22] on hard real-time scheduling for multiprocessor
systems.



2.3. REAL-TIME LOCKING 13

2.3 Real-Time Locking
In this section I will provide an overview of real-time locking and the challenges it
introduces to real-time scheduling. This section will also review the necessary literature
required to realize the main contributions of this thesis.

Any non-trivial system will require tasks to share resources that require mutually-
exclusive access. For example, tasks may require mutually-exclusive access to a net-
work interface controller or a shared region of memory. It then follows that tasks will
now have their executions delayed as they compete for these shared resources. In order
to determine if a task set is still schedulable after accounting for these delays, we must
be able to derive a provably sound upper-bound on the maximum time a task waits to
obtain mutually-exclusive access to a resource. A locking protocol arbitrates requests
from tasks for shared resources such that no shared resource is held at the same time
by two different tasks. A lock is used to protect a shared resource; to hold a shared
resource implicitly means to hold the lock that protects the shared resource.

Naturally, when a task requires mutually-exclusive access to a shared resource, it
must wait until the lock protecting the resource is no longer held by another task. The
two most common ways waiting is realized are through busy-waiting and suspension.

busy-waiting A task Ti that busy-waits does not yield processor time to other tasks,
but instead loops (or “spins”) until some condition that denotes that Ti has
acquired the lock is satisfied.

suspension A task Ti that suspends explicitly yields the processor to the next task
to be scheduled (as determined by the scheduling algorithm). Once Ti acquires
the lock, it is no longer suspended and becomes ready for execution.

Locks that are realized through busy-waiting are referred to as spin locks , and
are commonly seen in real-world systems. One example is in the AUTOSAR real-
time operating system standard (RTOS) [4], which mandates the use of spin locks to
arbitrate access to shared resources in multiprocessor systems. Spin locks are attractive
as they are both easy to analyze and implement; implementation requires very basic
hardware and operating system facilities.

Spin locks can be grouped into two broad categories: preemptive and non-preemptive.
Preemptive spin locks allow a task to be preempted by higher-priority tasks while
spinning, whereas non-preemptive spin locks do not allow this. Each flavor has its ad-
vantages and disadvantages. For example, with non-preemptive spin locks the system
benefits from fewer context switches, but at the risk of delaying higher-priority tasks
for “too long”, whereas preemptive spin locks yield to higher-priority tasks, but can
have more system overheads as they will context switch where non-preemptive spin
locks would not. The use of busy-waiting precludes the objectives of this thesis; the
reason for this will be discussed in Section 2.5. Thus, I will not discuss spin locks
any further in this thesis. For the interested reader, Brandenburg provides a thorough
overview on spin locks (and real-time locking as a whole) [11].

I focus on the use of binary semaphores—which wait by suspending—to realize
locking. I assume the reader is familiar with the use of semaphores and the atomic
operations used to modify their values. In the remainder of this section I present the
following:

• The notation and terminology used to model shared resources in this thesis.
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• The priority inversion problem, resource-related blocking, and their implications
on schedulability.

• Progress mechanisms and their properties.

• Nested real-time locking.

• An in-depth review on the three real-time protocols used to build the main
contribution of this thesis, the GIPP.

2.3.1 Shared Resource Model

Tasks compete for a set of q serially-reusable shared resources Γ = {`1, . . . , `q}. Each
task Ti accesses a possibly empty subset γi ⊆ Γ of the shared resources in the system.

I say a job Ji requires a shared resource `a at the first instant access to `a is required
for the continued execution of Ji. Once Ji requires `a, it issues a request R to the
locking protocol to acquire `a. R is said to be unsatisfied from the time it is issued
until Ji acquires `a, at which point R is said to be satisfied. R becomes complete when
Ji releases `a, which is also when Ji no longer requires `a. Finally, R is said to be
incomplete from the time it is issued until it is completed. Fig. 2.5 provides a visual
timeline from when Ji requires `a to when the associated request is complete. While
Ji waits to acquire `a, it is said to make progress if (one of) the job(s) that prevent(s)
Ji from acquiring `a is scheduled. Any method employed by a locking protocol to
ensure that a job makes progress is called a progress mechanism. I review progress
mechanisms in more detail in Section 2.4.3.

first requires
       issues a request

      for  
is satisfied is complete

requires 

is incomplete

Figure 2.5: Ji requires `a in the time interval [t1, t4) and issues a request R for `a at
time t2. R is incomplete the time interval [t2, t4) and unsatisfied in the time interval
[t2, t3).

If Ji issues a request R for a shared resource `a while holding no other shared
resources, then R is said to be an outermost request. Conversely, if Ji issues R for a
shared resource `b while holding `a, then R is said to be a nested request. Requests
do not need to be properly nested; it is possible for Ji to acquire `a, and then `b via
a nested request, but release `a before releasing `b, as seen in Fig. 2.6. I use Ni,a to
denote the maximum number of (outer and nested) requests Ji issues for `a, and the
total number of resource requests Ji issues is Ni =

∑
`a∈γi Ni,a.

A strict (irreflexive) partial ordering � on Γ is derived from the behavior of the
tasks in τ . Let `a � `b iff there exists a task that issues a request for `b while holding `a.
It then follows that workloads where `a � `b and `b � `a both hold are not permitted.

Consider Fig. 2.6. Let t1 be the time that Ji issues an outermost request for a shared
resource `a, and t4 be the next point in time where Ji holds no shared resources. I
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call the part of Ji’s execution in the time interval [t1, t4) an outermost critical section.
I define the length of a critical section to be the time required to execute the critical
section in the absence of any blocking or suspensions, and use Li,a to denote the length
of Ji’s longest outermost critical section that begins with an outermost request for `a.
Consequently, it may be the case that t4− t1 ≥ Li,a, as Ji could experience scheduling
or blocking delays during the execution of its outermost critical section. The longest
critical section length in Ji’s execution is denoted with Lmax

i = maxa Li,a and the
longest critical section length among all tasks is Lmax = maxi L

max
i .

outermost critical section 

outermost request for 

nested request for 

Figure 2.6: An outermost critical section that spans from time t1 until time t4. It
begins with an outermost request for `a, which completes at time t3. The nested
request for `b begins at time t2 and completes at time t4. All requests are satisfied
immediately in this example.

Up until now all the schedulability tests I have discussed make the assumption
that tasks are independent of each other. When shared resources are introduced this
is no longer true, and tasks incur blocking due to contention for shared resources. In
the following section I discuss how this blocking is measured and defined in real-time
locking and scheduling.

2.4 Priority Inversion Blocking
Intuitively, a priority inversion is said to occur when the execution of a higher-priority
job is delayed due to the execution of a lower-priority job [42, 44]. A typical example
of this occurs when a lower-priority job holds a shared resource that a higher-priority
job requires, and so the higher-priority job’s execution is delayed until the resource is
released. I refer to this type of blocking as priority inversion blocking (pi-blocking).

Consider the uniprocessor EDF schedule depicted in Fig. 2.7. When J1 arrives at
t = 5 it becomes the highest-priority job as its deadline is earlier than J2’s. Even
though J1 is the highest-priority job, it is not scheduled in the time interval [6, 9) as
the resource it requires is held by J2, and thus a priority-inversion occurs.

A common and primary goal in the design of all (sensible) real-time locking pro-
tocols is to minimize the pi-blocking that tasks incur while still being able to provide
provably sound upper-bounds on said pi-blocking. Without these bounds, it would
not be possible to adapt the schedulability tests reviewed in Section 2.2 to account
for pi-blocking, nor develop new tests. The following section reviews one of the most
notable uniprocessor real-time locking protocols. I choose to return to the uniprocessor
case initially to provide both background and intuition before discussing pi-blocking
in multiprocessor real-time locking.
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Figure 2.7: A uniprocessor EDF schedule of two jobs. J1 issues a request at t = 5 for
the shared resource `1 which is already held by J2. Thus, J1’s execution is delayed and
a priority inversion occurs in the time interval [6, 9). J2’s request for `1 is completed
at t = 9 and is then preempted by J1 which can now acquire `1. J1 continues its
execution until t = 13, at which point the processor is yielded to J2.

2.4.1 The Priority Inheritance Protocol

The Priority Inheritance Protocol (PIP) [42, 44] is one of the most notable (and earli-
est) real-time locking protocols. The PIP can be applied to globally scheduled systems,
but only the uniprocessor case is presented here. In the following rules for the PIP let
Ji be a job that requires a shared resource `a at time t.

D1 If `a is not held by another job at t then Ji acquires it.

D2 If `a is held by another job Jk at t then Jk inherits Ji’s effective-priority, i.e., Jk
executes with Ji’s effective priority.

D3 Ji suspends until `a is no longer held by another job and Ji has sufficient priority
to be scheduled again.

D4 If Jk is preempted while executing with Ji’s effective-priority by a job Jd that
also requires `a, then Jk inherits Jd’s effective-priority. Rule D3 then applies to
Jd.

D5 Once Jk releases `a it assumes its former effective-priority.

D6 Ji acquires `a once it is no longer held by another job, and Ji has sufficient
priority to be scheduled again.

Rules D4 and D6 are worth further discussion. In particular D4 shows that
priority inheritance is transitive; even as higher-priority jobs are released Jk still makes
progress. Rule D6 takes this transitive property into consideration and ensures that
Jd (if it exists) will be the next job to acquire `a. This is important as Jd (if it exists)
is by definition the highest-priority job waiting to acquire `a, and therefore the job
that will incur pi-blocking as it waits to acquire `a.
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Fig. 2.7 depicts a uniprocessor RM schedule of three implicit-deadline tasks that
compete for a shared resource `1. The transitive effect of priority inheritance is ob-
served at time t = 8 when J3’s effective priority is raised from J2’s effective priority to
J1’s effective priority. By Rule D6 J1 acquires `1 at t = 10 despite J2’s request for `1
is older than J1’s request for `1.
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Figure 2.8: A uniprocessor RM schedule of three implicit-deadline jobs that compete
for the shared resource `1 using the PIP.

An appropriate question to ask now is how do the schedulability tests described in
Section 2.2.1 and Section 2.2.2 apply when pi-blocking is present—like the schedule
shown in Fig. 2.8. The answer is that they no longer directly apply, as the assumption
that tasks are independent no longer holds. They must be modified to account for
the blocking that tasks now incur. Under the PIP a job Ji can be pi-blocked for at
most one critical section of every lower-priority job [42, 44]; let bi denote this bound.
This bound could be reduced by analyzing which resources each task accesses, but
such a fine-grained analysis is not relevant to a basic introduction to the PIP. With
the blocking bound bi established, the FP schedulability test from Section 2.2.1 can
be adapted as follows [20]:

∀1≤i≤n
∑
∀j∈hp(i)

⌈
ej
pj

⌉
+

⌈
ei + bi
pi

⌉
≤ i · (21/i − 1) (2.4)

What is intuitively happening here is that the sufficient schedulability condition
for RM scheduling in Theorem 2.2.1 is being checked for each task after inflating the
task’s WCET by its worst-case blocking term. If the condition holds for each task,
then the task set is schedulable. In the rest of this thesis the primary focus with
regards to schedulability analysis is calculating the blocking terms. The test shown in
Eq. (2.4) is simply to aid the reader in developing an understanding for how blocking
effects schedulability. The next section examines how to account for priority-inversion
blocking in multiprocessor environments.
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2.4.2 Analysis Methods for Priority Inversion Blocking

The concept of pi-blocking on uniprocessor systems is quite clear; if the highest-priority
job is not executing, then a priority inversion occurs. The idea is the same for multi-
processor systems but now one needs to decide how self-suspensions are accounted for
when defining priority inversion. I examine two methods here, as well as their impli-
cations on asymptotic upper-bounds on worst-case pi-blocking. The two methods are
suspension-oblivious analysis (s-oblivious analysis) [14] and suspension-aware analysis
(s-aware analysis) [14].

Under s-oblivious analysis, a task is assumed to never self-suspend (even though it
may due to interactions with a locking protocol), and any self-suspensions are treated
as execution time. Conversely, under s-aware analysis, self-suspensions are explicitly
accounted for. The definitions for priority inversion under these two analysis meth-
ods [14] are as follows, though stated in terms of clustered scheduling as seen in other
work [9].

Definition 2.4.1. Ji incurs an s-oblivious priority inversion at time t iff Ji is not
scheduled and its priority is among the top c priorities of pending jobs in cluster
C(Ti), i.e., if HEP(Ji, t).

Definition 2.4.2. Ji incurs an s-aware priority inversion at time t iff Ji is not sched-
uled and its priority is among the top c priorities of ready jobs in cluster C(Ti), i.e.,
if HEP(Ji, t).

These two methods of analysis yield different lower-bounds on the pi-blocking in-
curred by a job due to requests for shared resources, which are Ω(m) and Ω(n), respec-
tively [14]. For example, the worst-case pi-blocking a job incurs per resource request
is upper-bounded by m ·K, where K is a constant that is typically the length of the
longest critical section among all the tasks (i.e., Lmax). Importantly, these bounds
remain the same (i.e., expressed in terms of m instead of c) under clustered scheduling
as resources can be shared among tasks in different clusters.

In the rest of this thesis I use bi,a to denote the maximum s-oblivious pi-blocking
incurred by Ji due to requests by any task for a shared resource `a, and bi to denote
Ji’s cumulative s-oblivious pi-blocking. The following theorem introduced by Bran-
denburg and Anderson proves the fundamental lower-bound on worst-case s-oblivious
pi-blocking due to resource sharing in multiprocessor systems; I provide intuition for
the result after stating the theorem. Before presenting the theorem, I define the pa-
rameterized task set used during its proof [14].

• Let τ seq(n) denote a task set of n identical tasks that share a single resource `1.

• ∀1≤i≤nei = 1, pi = 2n,Ni,1 = 1, Li,1 = 1.

• The number of tasks and processors are such that n ≥ m ≥ 2.

Theorem 2.4.1 ([14, Lemma 1]). There exists an arrival sequence for τ seq(n) such
that, under s-oblivious analysis, maxTi∈τseq(n){bi} = Ω(m).

I refer the reader to the original work for the proof. However, to build an intuition
for why this is the case, consider Fig. 2.9. Each job is identical, and each of them
requires access to `1. Regardless of the method one chooses to arbitrate access to `1,
one of the jobs will necessarily need to wait for m−1 other requests for `1 to complete,
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and by Definition 2.4.1 the job incurs s-oblivious pi-blocking while doing so. In this
example J4 is the job that waits for m− 1 requests for `1 to complete, and thus incurs
Ω(m) s-oblivious pi-blocking.

0 5 10 15 20

Scheduled

Critical Section

Release

Deadline

Job Completion

Suspension

Priority Inversion

CS Start / Completion/

Figure 2.9: A G-EDF schedule (adapted from [14, Figure 2]) of n = 4 tasks scheduled
on m = 4 processors to demonstrate the fundamental lower-bound of Ω(m) worst-case
s-oblivious pi-blocking due to resource sharing in multiprocessor systems.

In the case of s-aware analysis there is an analogous theorem in the original work
[14, Lemma 10] that proves the fundamental lower-bound of Ω(n). A more in-depth
review of s-aware analysis is out of the scope of this thesis as I focus exclusively on
s-oblivious analysis from this point on. The interested reader should reference the
original work.

One of the important properties of the locking protocols discussed and developed
in the remainder of this thesis is optimality . To conclude this section I will define
what it means for a locking protocol to be (asymptotically) optimal with respect to
s-oblivious pi-blocking, as well as the notion of bounded blocking .

Definition 2.4.3. A locking protocol is asymptotically optimal under s-oblivious anal-
ysis if the worst-case s-oblivious pi-blocking a job incurs per request is upper-bounded
by O(m).

By Theorem 2.4.1 the worst-case s-oblivious pi-blocking a job incurs per request is
lower-bounded by Ω(m), i.e., it is not possible to realize a lower bound on worst-case
s-oblivious pi-blocking in the general case. Thus, if a locking protocols bounds the
worst-case s-oblivious pi-blocking a job incurs per request by O(m), it achieves a tight
asymptotic bound Θ(m) on worst-case s-oblivious pi-blocking. Stated differently, such
a protocol is optimal with respect to s-oblivious pi-blocking as its worst-case upper-
bound is no worse than the fundamental worst-case lower-bound (within a constant
factor).

When deriving asymptotic bounds on bi, I consider Lmax (the maximum critical sec-
tion length among all tasks) to be a constant (i.e., not a function of m nor n), whereas
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each ei is not considered to be a constant. Historically, pi-blocking is considered to
be bounded only if no bi depends on any ei [14, 41, 42, 44]; I make this assumption
as well. Thus, any locking protocol that provides s-oblivious pi-blocking bounds in
terms of some ei is not asymptotically optimal. From a more pragmatic perspective,
this assumption is made as WCETs can be orders of magnitude larger than critical
sections (e.g., [49]).

Employing an asymptotically optimal locking protocol to arbitrate access to re-
sources allows one to “easily” incorporate provably sound blocking bounds into a
schedulability analysis. For example, the protocol I will discuss in Section 2.5.1 has a
worst-case upper-bound of (2m− 1) ·Lmax s-oblivious pi-blocking per resource request
— if a job Ji issues Ni,a requests for a shared resource `a, one can safely inflate ei
by Ni,a · (2m − 1) · Lmax to account for the blocking Ji incurs due its requests for `a.
While this is a provably safer upper-bound on the s-oblivious pi-blocking Ji incurs,
it is clearly overly pessimistic if only one other job requests `a. These bounds can
be tightened with a fine-grained blocking analysis. One of the main contributions of
this thesis is such an analysis; it is presented in Chapter 5 for the locking protocol
constructed in Section 4.3.

2.4.3 Progress Mechanisms

In section Section 2.3.1 I briefly stated that a progress mechanism is “any method
employed by a locking protocol to ensure that a job makes progress”. With this in
mind, I define progress as follows.

Definition 2.4.4. Let Ji be a job that incurs s-oblivious pi-blocking at time t (i.e.,
HEP(Ji, t) is true) while it waits to acquire a shared resource `a. Ji makes progress if
(one of) the job(s) that prevent(s) Ji from acquiring `a is scheduled.

The motivation for ensuring a job makes progress is to be able to bound the s-
oblivious pi-blocking it incurs. In Section 2.4.1 priority inheritance was introduced as
a progress mechanism; it ensured that if at any time a job was pi-blocked waiting on
a resource, then the resource-holder was scheduled.

The choice of progress mechanism can vary greatly based on the locking protocol
used, the goals of the system, the behavior of a given task set, and the underlying
system being used. As a simple example, one of the simplest progress mechanisms is
priority boosting. With priority boosting a job’s effective priority is set higher than
effective priority that any other job can have and in-effect runs non-preemptively.

The progress mechanisms used in this thesis are introduced as needed — justifica-
tion for the use of a particular progress mechanism is not discussed unless it is specif-
ically relevant to the contributions of this work. A thorough discussion of progress
mechanisms is out of the scope of this thesis; for a more in-depth review of progress
mechanisms, I refer the reader to Brandenburg’s review on real-time locking proto-
cols [11].

2.5 Independence Preservation

The high-level idea of independence preservation is that tasks are isolated from “un-
related” critical sections. This can be easily pictured for locking protocols that do
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not permit nested locking; if a task never requests a shared resource `a, it incurs no
pi-blocking as a result of requests by other tasks for `a.

Prior work introduced the notion of independence preservation [9] among tasks in
a system that compete for shared resources where no nested requests are made. For
clarity, and to build upon it later, we restate the definition here.

Definition 2.5.1. Let bi,a denote the pi-blocking incurred by Ji due to requests by
any task for a shared resource `a. Under s-oblivious analysis, a locking protocol is
non-nested independence-preserving iff Ni,a = 0 implies bi,a = 0.

The motivation for independence preservation becomes clear when considering
latency-sensitive tasks, defined as follows.

Definition 2.5.2. A task Ti is said to be latency-sensitive if its slack, the difference
between its relative deadline and WCET, is less than the length of the longest critical
section of any other task Tj, i.e., di − ei < Lmax

j .

Workloads with latency-sensitive tasks present an interesting scheduling issue. If
critical sections are permitted to execute non-preemptively then a latency-sensitive
task Ti necessarily misses its deadline if it is not scheduled due to a lower-priority task
Tj executing non-preemptively for Lmax

j time units. Thus, independence preservation
precludes the use of progress mechanisms like priority boosting that have tasks execute
non-preemptively either explicitly or in-effect.

2.5.1 The O(m) Independence Preserving Locking Protocol

The O(m) Independence-Preserving Protocol (OMIP) is an asymptotically optimal
(w.r.t. s-oblivious pi-blocking) independence-preserving real-time locking protocol [9]
for clustered JLFP scheduling. I review this protocol as it is the first independence-
preserving real-time locking protocol designed for clustered scheduling. I first define
the allocation inheritance (AI) progress mechanism [29, 30, 31] (sometimes referred to
as migratory priority inheritance [9, 16]), and then restate the rules and structure of
the OMIP [9] here in full. This serves as a review on independence-preserving locking
protocols, and to provide the background necessary to discuss some fundamental limits
with locking protocols that are realized with FIFO queues.

Definition 2.5.3. Let Ji be a job that holds a shared resource `a, and Wi be the set
of jobs across all clusters waiting to acquire `a. Under allocation inheritance (AI), if
Ji is not scheduled and there exists a job Jk ∈ Wi ∪ {Ji} that has sufficient priority
to be scheduled in C(Tk), then Ji migrates to C(Tk) (if necessary) and runs with Jk’s
priority. While Ji executes in C(Tk) with Jk’s priority, Jk is called an allocation donor.
Once Ji releases `a, it migrates back to C(Ti) (if necessary) and resumes execution
when it has sufficient priority. Finally, Ji’s allocation donor (if any) ceases to be an
allocation donor when Ji releases `a.

Structure Each shared resource `a is protected by a global FIFO queue GQa of
maximum length m

c
. The job at the head of GQa holds `a. Access to GQa is resolved

on a per-cluster basis and per-resource basis: in each cluster Ck, there exist another
two queues for each `a; a bounded-length FIFO queue FQa,k of maximum length c that
feeds into GQa, and a priority queue PQa,k that feeds into FQa,k. Requests for each `a
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are satisfied as follows. Let Ji denote a job of a task assigned to Ck. Conceptually, Ji
first feeds into its local PQa,k and then advances through the queues until it becomes
the head of GQa. A visual example of this queuing structure is depicted in Fig. 2.10.
The rules of the OMIP are as follows.

R1 When Ji issues a request for `a and FQa,k is empty, then Ji is enqueued in both
GQa and FQa,k. Otherwise, if there are fewer than c jobs queued in FQa,k, then
Ji is enqueued only in FQa,k. Finally, if there are already c jobs queued in FQa,k,
then Ji is enqueued in PQa,k.

R2 Ji’s request for `a is satisfied when it becomes the head of GQa. Ji is suspended
while it waits (if necessary).

R3 While Ji holds `a, it benefits from AI (w.r.t. any job waiting to acquire `a).

R4 When Ji releases `a, it is dequeued from both GQa and FQa,k. If PQa,k is non-
empty, then the head of PQa,k is transferred to FQa,k. Further, if FQa,k is
non-empty, then the new head of FQa,k is enqueued in GQa. The new head of
GQa, if any, is resumed.

Figure 2.10: A visualization of the OMIP queuing structure for a system with four
clusters. J4 is at the head of FQa,4 and the tail of GQa. Before J4 acquires `a (i.e., by
becoming the head of both FQa,4 and GQa) it must first wait for one job from each of
the clusters C1, C2, C3 to complete their requests for `a.

I refer the reader to the original work [9] for the full proofs of optimality and
independence-preservation. The OMIP solves the problem of providing an independence-
preserving locking protocol for clustered JLFP systems, but only for non-nested lock-
ing. That is, the OMIP does not allow a job to hold more than one resource simulta-
neously unless group locks are utilized. I discuss group locks and nested locking in the
following sections.

2.6 Nested Locking
The way nested locking protocols realize nested locking can be divided into two broad
categories: coarse-grained locking and fine-grained locking. The Flexible Multiproces-
sor Locking Protocol (FMLP) [8] is an example of a real-time locking protocol that
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employs coarse-grained nested locking. Under the FMLP, resources are split into
groups, and each group has a corresponding group lock . A job that holds a group lock
has mutually-exclusive access to all the resources in the corresponding group. The
simplicity of coarse-grained locking comes at the expense of reduced parallelism. If a
job Ji accesses only a single resource in a group, it must still acquire the corresponding
group lock, which precludes other jobs from accessing the otherwise free resources in
the group. For example, consider two shared resources `a and `b that are held simul-
taneously by some job, and so they will be protected by the same group lock. When
Ji issues a request `a, it acquires the group lock, and no other job can access `b until
Ji releases the group lock.

In contrast to coarse-grained locking, fine-grained locking allows shared resources
to be acquired incrementally. For example, the Real-Time Nested Locking Protocol
(RNLP) [53] allows jobs to issue nested requests for resources as they are needed,
which provides more opportunities for parallelism when compared to simple group
locks. However, the increased potential for parallelism comes at the cost of more
complicated protocol rules and data structures when compared to group locks, as
group locks can be realized with simpler non-nested locking protocols.

One might consider extending the OMIP to realize the goal of this thesis. The
structure of the OMIP, in particular its reliance on FIFO queues, precludes it from
realizing asymptotically optimal fine-grained nested locking. Let d be the maximum
nesting level [48] of a task set τ . The value of d is the maximum number of locks
held at any on time by a task Ti ∈ τ . For example, consider a job Ji and three shared
resources `a, `b, and `c. If Ji issues a request for `b while holding `a, and then a request
for `c while holding `a and `b, then d = 3. Takada and Sakamura show that the use of
FIFO queues to realize nested locking results in O(md) worst-case pi-blocking [48].

Takada and Sakamura’s upper-bound is easily conceptualized. Consider the fol-
lowing scenario under the rules and structure of the OMIP where fine-grained nested
resource requests are permitted.

• Assume two FIFO queues FQa and FQb used to arbitrate access to `a and `b,
respectively. In order for a job to hold `a or `b the job must be the head of the
respective FIFO queue.

• Assume Ji is at the head of FQa, Jk at the tail of FQa, and there are m− 2 jobs
in between them in FQa.

• In the worst-case Ji incurred O(m) s-oblivious pi-blocking while it waited to
acquire `a.

• While Ji holds `a it issues a request for `b, and again incurs O(m) s-oblivious
pi-blocking blocking in the worst-case, as there may already be m − 1 jobs in
FQb when Ji issues a request for `b. The maximum nesting level is then d = 2
in this scenario.

• Assume now that the m − 2 jobs between Ji and Jk in FQa will also issue a
nested request for `b after acquiring `a. Each of them incurs O(m) s-oblivious
pi-blocking in the worst-case while waiting to acquire `b.

• Jk then waits for m− 1 (i.e., O(m)) requests for `a to complete before acquiring
`a, and in the worst-case Jk will incur O(m) s-oblivious pi-blocking while it
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waits for each those requests to complete. Thus Jk incurs O(m) ·O(m) = O(m2)
s-oblivious pi-blocking in the worst-case.

This example helps to demonstrate that the structure of an asymptotically optimal
nested locking protocol cannot rely (solely) on FIFO queues to arbitrate access to
shared resources. In Section 2.6.1 I review a fined-grained nested locking protocol that
addresses this problem, and is pivotal in realizing the results of this thesis.

2.6.1 The Real-Time Nested Locking Protocol

The Real-Time Nested Locking Protocol (RNLP) [53] presented a breakthrough in
real-time nested locking, as it is the first, and up until now, the only asymptotically
optimal fine-grained nested locking protocol for multiprocessor systems; it can be
applied under clustered (and therefore global/partitioned) scheduling. Actually, the
RNLP is a “meta protocol” in the sense that it defines the properties that a token
lock, and a request satisfaction mechanism (RSM) must obey to realize an optimal
fine-grained nested locking protocol. The token lock restricts the number of jobs that
can hold resources at any given time, whereas the RSM determines when resource
requests among the token holders are satisfied; one key component of how a RSM
determines this is by its associated progress mechanism(s). The behavior of a particular
instantiation (i.e., a token lock/RSM combination) of the RNLP is largely determined
by the progress mechanisms that the token lock and RSM employ. Ward and Anderson
provide a number of instantiations and their corresponding upper-bounds on worst-
case s-oblivious pi-blocking in the original work [53, Table 2]. The life cycle of a request
under the RNLP is depicted in Fig. 2.11.

issues token
 request     

issues is satisfied is complete

suspended by
the token lock

suspended by
the RSM

outermost
critical section

Figure 2.11: The life cycle of a request for a shared resource under the RNLP (adapted
from [53]).

The RNLP is a key component in realizing the GIPP. Therefore, I will restate the
following from the original work on the RNLP [53] in this section: (i) the necessary
properties every token lock and RSM must satisfy to realize a valid instantiation of
the RNLP, (ii) the structure and rules of the RNLP, and (iii) the theorem that states
the worst-case s-oblivious pi-blocking per outermost request for any valid RSM, which
is used in Section 4.3 to prove the optimality of the GIPP.

T1 There are at most m token-holding jobs at any time, of which there are no more
than c from each cluster (and thus m across all clusters).

T2 If a job is pi-blocked waiting for a token, then it makes progress.

R1 If a job is pi-blocked by the RSM, then the job makes progress.

Every token lock must satisfy Properties T1 and T2, and every RSM must satisfy
Property R1.
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Structure Jobs first compete for one of m identical tokens under the rules of
the token lock. Once a job acquires a token, it can then compete for shared resources
under the rules of the RSM. All RSMs share a number of common traits. For each
shared resource `a there is a resource queue RQa of length at most m. A timestamp
of token acquisition is stored for each job Ji, and denoted ts(Ji). Note that ts(Ji)
is actually a function of time as it is updated upon each token acquisition, but the
structure and rules focus on a single request, so the time parameter is omitted for
simplicity of notation. Each RQa is priority-ordered by increasing timestamp. In the
absence of any nested locking, the ordering is the same as FIFO ordering. This priority
ordering allows a job that issues a nested request to “cut in line” to where it would
have been at the time of its outermost request. The job at the head of RQais denoted
with hd(a). A visualization of this queuing structure is depicted in Fig. 2.12. The
following rules are common to all RSMs.

Q1 When Ji acquires a token at time t, its timestamp is recorded: ts(Ji) := t. A
total order is assumed on all such timestamps.

Q2 All jobs in RQa are waiting with the possible exception of hd(a).

Q3 A job Ji acquires resource `b when it is the head of the RQb, i.e., Ji = hd(b), and
there is no resource `a such that `a � `b ∧ ts(hd(a)) < ts(Ji).

Q4 When a job Ji issues a request for resource `a it is enqueued in RQa in increasing
timestamp order.

Q5 When a job releases resource `a it is dequeued from RQa and the new head of
RQa (if any) can gain access to `a, subject to Rule Q3.

Q6 When Ji completes its outermost critical section, it releases its token.

token lock
resource requests

requests for 

requests for 

Figure 2.12: Visualization of the RNLP’s queuing structure. When a job first requires
a resource, it first issues a request for a token under the rules of a chosen token lock.
Upon acquiring a token, the job competes for resources under the rules of the RSM.

Theorem 2.6.1 ([53, Theorem 1] Paraphrased). The worst-case s-oblivious pi-blocking
in the time interval [t2, t4) (see Fig. 2.11) for any RSM is (m− 1) · Lmax.

The key component of the RNLP that allows for asymptotically optimal fine-
grained nested locking is the timestamp ordering of requests in the RSM; it prevents
the transitive blocking chain problem. Consider Fig. 2.13. J2 issues a request for `2
at time t = 2, but J2 is suspended by Rule Q3 as `1 � `2 ∧ ts(hd(1)) < ts(J2) where
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hd(1) = J1. At t = 10 the just mentioned condition is no longer true and J2 is able to
acquire `2. However J3 must still wait at t = 10 as `2 � `3 ∧ ts(hd(2)) < ts(J3) where
ts(hd(2)) = J2. Notice that J4 is able to acquire `1 at t = 10, but this does not block
J2’s request. While it is the case that `1 � `2, the condition that ts(hd(1)) < ts(J2)
does not hold where ts(hd(1)) = J4. Without the timestamp condition imposed by
Rule Q3 it could have been the case that J2 acquired `2 before J1. Likewise, J3 could
have acquired `3 before J2. Should a pattern like this continue, it would form a long
transitive blocking chain, and J1 would need to wait for the critical sections of all the
jobs in said chain to complete before acquiring `2. Thus, Ji’s worst-case s-oblivious
pi-blocking would be bounded by the length of such a chain instead of the number of
processors.
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Figure 2.13: An example (adapted from [53, Figure 4]) of n = 4 tasks that compete for
q = 3 shared resources under the RNLP. J2 and J3 are suspended by Rule Q3 in the
time intervals [2, 3) and [3, 6), respectively. Rule Q2 accounts for the remainder of the
time that J2, J3, and J4 are suspended. A dashed purple line and a dashed orange line
mark the time intervals that jobs are blocked by Rule Q2 and Rule Q3, respectively.

The following section introduces a progress mechanism that will be generalized to
clustered scheduling in order to realize the GIPP.

2.6.2 The Replica-Request Donation Global Locking Protocol

The Replica-Request Donation Global Locking Protocol R2DGLP [54] is a k-exclusion
lock designed for globally-scheduled systems that is both non-nested independence-
preserving and asymptotically optimal under s-oblivious analysis. In short, a k-
exclusion lock arbitrates access to k identical shared resources; tokens, for example.
The R2DGLP employs a progress mechanism called Replica-Request Priority Donation
(RRPD) [54].

RRPD is a modification of the earlier Job-Release Priority Donation (JRPD)
progress mechanism [15]; I refer the reader to the original work for full details on JRPD.
The key difference between RRPD and JRPD is that under RRPD a job Ji donates its
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priority (i.e., another job inherits Ji’s priority) upon requesting a resource, whereas
Ji would donate its priority upon release under JRPD. This allows the R2DGLP to
realize non-nested independence preservation. JRPD cannot be used to realize non-
nested independence preservation, as Ji may donate its priority to a job Jd despite
γi ∩ γd = ∅ (i.e., Ji and Jd do not access a common resource). Lastly, RRPD relies on
the ability to compare priorities among all jobs and therefore only applies to globally-
scheduled systems, as analytically speaking, numeric priority values are incomparable
across clusters. However, this thesis adapts RRPD for use in clustered scheduling as
follows.

I reason about RRPD on a per-cluster basis, i.e., each cluster is treated as an
entirely independent globally-scheduled system with respect to RRPD. Therefore, I
adapt all rules and notation for clustered scheduling when discussing RRPD. The term
replica is used when discussing a shared resource under RRPD; each shared resource
is assumed to be part of a set of k ≥ 1 identical replicas. For clarity, k = 1 in a system
where resources are not replicated. I restate the rules of RRPD [54] here as they are
necessary for the GIPP. These rules are stated in the context of a single cluster, and
therefore all jobs are implicitly assigned to the same cluster.

In the following rules for the RRPD let Ji be a job that first requires a replica of `a
at time t1. Let t2 be the time that Ji issues the corresponding request, t3 be the time
the request is satisfied, and t4 be the time the request is completed; reference Fig. 2.14
for a visual representation. Finally let Jd be a job that requires `a and becomes Ji’s
priority donor at tx. If necessary, Jd may suspend until it may issue its request for `a.

D1 Ji may issue a request for a replica of `a only if it is among the c highest effective-
priority jobs that currently require a replica of `a (including jobs with an incom-
plete request for a replica of `a). If necessary, Ji suspends until it may issue its
replica request.

D2 Jd becomes Ji’s priority donor at time tx if (i) Jd has one of the c highest base-
priorities among jobs that currently require a replica of `a, (ii) Ji is the lowest
effective-priority job with an incomplete request for a replica of `a at time tx,
and (iii) there are c jobs with an incomplete request for a replica of `a .

D3 Ji assumes the priority of Jd (if any) during [t2, t4). Jd is considered to have no
effective priority while it is a donor.

D4 If a job Jd donating its priority to Ji is displaced from the set of the c highest
base-priority jobs that require a replica of `a by a job Jh, then Jh becomes Ji’s
priority donor and Jd ceases to be a priority donor. (By RuleD3, Ji thus assumes
Jh’s priority.)

D5 A priority donor is suspended throughout the duration of its donation.

D6 Jd ceases to be a priority donor as soon as either (i) Ji completes its critical
section (i.e., at time t4), or (ii) Jd is relieved by Rule D4.

As stated earlier, the R2DGLP is realized through the use of RRPD as a progress
mechanism. However, the use of RRPD by itself is not sufficient to guarantee that jobs
make progress [54], and so it must be paired with another progress mechanism. In the
case of the R2DGLP, the additional progress mechanism used is priority inheritance,
but any progress mechanism that satisfies the following property suffices [54].
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Figure 2.14: Life cycle of a request under RRPD for a replica of a shared resource `a
(adapted from [54]).

P1 A job Ji with an incomplete replica request makes progress (i.e., either Ji is
scheduled itself or the replica-holding job that Ji is waiting for is scheduled) if
Ji has sufficient priority to be scheduled in C(Ti).

The following three lemmas will complete the necessary background on RRPD I
need to introduce for this thesis. The lemmas are required when constructing the main
contribution of this thesis.

Lemma 2.6.1 ([54, Lemma 2]). There are at most m jobs with an incomplete request
for a replica of a shared resource `a at any time.

Lemma 2.6.2 ([54, Lemma 4]). Under RRPD, if a job Ji that requires a replica of `a
is pi-blocked waiting for a replica of `a it either has an incomplete request for a replica
of `a or it is a priority donor.

Lemma 2.6.3 ([54, Lemma 5]). A priority donor Jd can be pi-blocked during priority
donation for at most the maximum duration of time that a job can be pi-blocked with
an incomplete request for a replica of `a (refer to timeline in Fig. 2.14), plus one critical
section.

To conclude, the key concept of this section is the RRPD progress mechanism. The
R2DGLP will be discussed in more detail in Section 4.1 where its structure and rules
are used to build a token lock to be paired with the RNLP.

2.7 Summary
In this chapter I have presented the reader with a brief introduction to real-time
scheduling and real-time locking. The major points touched on, along with their
corresponding sections, are as follows:

• Section 2.1—The sporadic task model was introduced to model systems of real-
time tasks.

• Section 2.2—Uniprocessor scheduling algorithms and their schedulability tests.
This section also reviewed the difference between FP and JLFP scheduling.

• Section 2.2.3—Multiprocessor scheduling and its properties.
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• Section 2.3—An introduction to real-time locking and common lock types.

• Section 2.3.1—The model used for shared resources in this thesis.

• Section 2.4 and Section 2.4.2—The priority inversion problem was introduced as
well as two methods for analyzing priority inversion in multiprocessor environ-
ments.

• Section 2.5 and Section 2.5.1—Independence preservation and a review of the
OMIP, the first non-nested independence-preserving locking protocol for clus-
tered scheduling.

• Section 2.6—An overview of coarse-grained vs fine-grained nested locking, and
the necessary background on the protocols and progress mechanisms used to
realize the GIPP.

To summarize, I will outline where the protocols discussed so far fall short in terms
of realizing the main contribution of this thesis, that is, providing asymptotically
optimal fine-grained nested real-time locking with independence preservation.

The use of group locks comes at the loss of parallelism that fine-grained nested
locking can offer. If shared resources that will be held at the same time are protected
by a group lock, then both the OMIP and R2DGLP can realize asymptotically optimal
coarse-grained nested locking through the use of group locks under clustered and global
scheduling, respectively. Additionally, if we treat the resources protected by the group
lock as a single shared resource, then the two protocols retain the property of being
non-nested independence-preserving.

Even in the absence of nested locking, non-nested independence preservation is
not a property that is trivially realized with the RNLP. Fundamentally, the use of a
token lock that arbitrates access tom tokens (and thus restricts the number of resource-
holding jobs tom) precludes non-nested independence preservation. Consider a system
with m tokens, each held by a distinct job that needs access to a shared resource `a.
If a job Ji that only accesses `b issues a request for a token, it must wait for one
to become available, which means the pi-blocking it incurs due to requests for `a is
non-zero (i.e., Ni,a = 0 but bi,a > 0).

With the exception of the work this thesis is based on [43], I am not aware of
any fine-grained nested locking protocol that is non-nested independence-preserving
nor any work that has considered what it means to be independence-preserving in the
context of fine-grained nested locking.

In this thesis I extend the notion of independence preservation to nested locking.
To this end I create both an asymptotically optimal k-exclusion lock, and an asymp-
totically optimal independence-preserving fine-grained nested locking protocol for use
under clustered scheduling; the CKIP and the GIPP, respectively. Finally, a fine-
grained (i.e., non-asymptotic) analysis of the GIPP is introduced and subsequently
used to conduct simulated schedulability experiments. The fine-grained analysis also
doubles as an analysis for a particular instantiation of the RNLP; to the best of my
knowledge, this is the first time a fine-grained analysis has been applied to an instan-
tiation of the RNLP.



Chapter 3

Nested Independence Preservation

The notion of independence preservation introduced in Definition 2.5.1 does not di-
rectly apply to nested locking, and there exists more than one way to generalize
the notion in a conceptually analogous way, depending on when exactly resources
involved in nesting are considered to be “related” (i.e., when they are considered “non-
independent”). I consider two possible definitions in the following that I consider to
be the most natural way of expressing the idea.

Consider the P-EDF (C-EDF where c = 1) schedule of three jobs depicted in
Fig. 3.1. For the purpose of this example I assume no particular progress mechanism,
and simply have a job suspend until the resource it requires becomes available. In-
tuitively, some relationship exists between resources `1 and `2, since J2 holds both of
them at the same time. How this relationship is defined will determine the properties
of a nested independence-preserving locking protocol.

0 5 10 15 20

Scheduled

Critical Section

Release

Deadline

Job Completion

Suspension

Priority Inversion

CS Start / Completion/

Figure 3.1: P-EDF schedule of three jobs that access two shared resources. J3 incurs
s-oblivious pi-blocking in the time interval [4, 9) as it waits to acquire `1. During
the time interval [4, 6), J3 is transitively blocked by J1 as J1 holds `2, which J2 must
acquire before it can release `1.
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3.1 Outer-Lock Independence Preservation

The core idea behind outer-lock independence preservation is that there is a relation,
which I call dependence, between a shared resource `a and shared resources acquired via
nested requests (with respect to an outer request for `a). The following two definitions
formalize this idea.

Definition 3.1.1. For a shared resource `a ∈ Γ the set [`a]
ol = {`x | `a � `x} ∪ {`a} is

the set of resources `a depends on.

Definition 3.1.2. For a task Ti, the set Dol
i =

⋃
`a∈γi [`a]

ol is the set of shared resources
Ti depends on.

Dependence among shared resources can be thought of as a directed acyclic graph
(DAG). The vertices represent shared resources, and for any two vertices va and vb,
which respectively represent `a and `b, there exists an arc between them only if `a �
`b. Then, for any shared resource `x, it depends on itself, and the shared resources
represented by the vertices of which there exists a directed path to. For example, in
Fig. 3.2, `a depends on the set of resources {`a, `b, `c, `d}, but `d depends only on itself.

`a
<latexit sha1_base64="FaBrlMC5WVLU+IGnVK0MixxVRt8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBnRQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62uHZGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZm/ToZcITNiagllittbCRtTRZmxAZVsCN7qy+ukXat6V9Xa/XWlUc/jKMIZnMMleHADDbiDJrSAwSM8wyu8ObHz4rw7H8vWgpPPnMIfOJ8/fCiPCQ==</latexit>

`b
<latexit sha1_base64="y+tB29WL8CHI6p3dTgPYgbdVECU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBsGgXHGr7gJknXg5qUCO5qD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sce2MXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPW/YzLJDUo2XJRmApiYjJ/nQy5QmbE1BLKFLe3EjamijJjAyrZELzVl9dJu1b1rqq1++tKo57HUYQzOIdL8OAGGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AH2sjwo=</latexit>

`c
<latexit sha1_base64="D0vTNd5JSOZTpC1Ne8Dnx1WE4VM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBmxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62uHZGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZm/ToZcITNiagllittbCRtTRZmxAZVsCN7qy+ukXat6V9Xa/XWlUc/jKMIZnMMleHADDbiDJrSAwSM8wyu8ObHz4rw7H8vWgpPPnMIfOJ8/fzCPCw==</latexit>

`d
<latexit sha1_base64="NiN6SJ4IH91sqcoAJgPOs3B87pc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJu3azSbsboRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBVcG9f9dgobm1vbO8Xd0t7+weFR+fikrZNMMWyxRCSqG1CNgktsGW4EdlOFNA4EdoLx7dzvPKHSPJEPZpKiH9Oh5BFn1Fip3UchBuGgXHGr7gJknXg5qUCO5qD81Q8TlsUoDRNU657npsafUmU4Ezgr9TONKWVjOsSepZLGqP3p4toZubBKSKJE2ZKGLNTfE1Maaz2JA9sZUzPSq95c/M/rZSaq+1Mu08ygZMtFUSaIScj8dRJyhcyIiSWUKW5vJWxEFWXGBlSyIXirL6+Tdq3qXVVr99eVRj2PowhncA6X4MENNOAOmtACBo/wDK/w5iTOi/PufCxbC04+cwp/4Hz+AIC0jww=</latexit>

`e
<latexit sha1_base64="Tfi2No+Th0gtzhALIjTWHR/K7+w=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBjgoV9yquwBZJ15OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bXDsjF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IR1P+MySQ1KtlwUpoKYmMxfJ0OukBkxtYQyxe2thI2poszYgEo2BG/15XXSrlW9q2rt/rrSqOdxFOEMzuESPLiBBtxBE1rA4BGe4RXenNh5cd6dj2VrwclnTuEPnM8fgjiPDQ==</latexit>

`f
<latexit sha1_base64="ZeYweUMlteW3HEDuPfRE6IrQkDo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBuGgXHGr7gJknXg5qUCO5qD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sce2MXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPW/YzLJDUo2XJRmApiYjJ/nQy5QmbE1BLKFLe3EjamijJjAyrZELzVl9dJu1b1rqq1++tKo57HUYQzOIdL8OAGGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AIO8jw4=</latexit>

`a � `b

`a � `c

`c � `d

`e � `f
<latexit sha1_base64="oI3Zx8XTJ8CvwAHKwtn9vvoz+fk=">AAACRHicbZDLSgMxFIYz9VbrbdSlm2ARXJWZKiiuCm5cVrAX6JSSOT3ThmYuJBmhlD6cGx/AnU/gxoUibsV0Wkpt/SHw5zvncJLfTwRX2nFerdza+sbmVn67sLO7t39gHx7VVZxKwBrEIpZNnykUPMKa5lpgM5HIQl9gwx/cTuqNR5SKx9GDHibYDlkv4gEHpg3q2C0Phegw6qkUgGYXn3peYRXDHMMi7s4xLuLA4I5ddEpOJrpq3JkpkpmqHfvF68aQhhhpEEypluskuj1iUnMQOC54qcKEwYD1sGVsxEJU7VEWwpieGdKlQSzNiTTN6OLEiIVKDUPfdIZM99VybQL/q7VSHVy3RzxKUo0RTBcFqaA6ppNEaZdLBC2GxjCQ3LyVQp9JBtrkXjAhuMtfXjX1csm9KJXvL4uVm1kceXJCTsk5cckVqZA7UiU1AuSJvJEP8mk9W+/Wl/U9bc1Zs5lj8kfWzy8Ywq+0</latexit>

`g
<latexit sha1_base64="pnw9EKSqNepVSJ7Qs46usPVSFbc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBqNBueJW3QXIOvFyUoEczUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9SyWNUPvZ4toZubDKkISxsiUNWai/JzIaaT2NAtsZUTPWq95c/M/rpSas+xmXSWpQsuWiMBXExGT+OhlyhcyIqSWUKW5vJWxMFWXGBlSyIXirL6+Tdq3qXVVr99eVRj2PowhncA6X4MENNOAOmtACBo/wDK/w5sTOi/PufCxbC04+cwp/4Hz+AIVAjw8=</latexit>

Figure 3.2: Visualization of dependence among shared resources as a directed acyclic
graph. The partial ordering used to construct the graph is depicted on the right.
Dependence is defined to be both transitive and reflexive (but not symmetric). For
example, `a depends on {`b, `c, `d}, but `d only depends on itself.

Based on the precise notion of dependence just introduced, I define outer-lock
independence preservation as follows.

Definition 3.1.3. Let bi,a denote the pi-blocking incurred by Ji due to requests by
any task for a shared resource `a. Under s-oblivious analysis, a locking protocol is
outer-lock independence-preserving iff `a /∈ Dol

i implies bi,a = 0.

Outer-lock independence preservation as a notion for nested independence preser-
vation has a fundamental impact on the pi-blocking incurred by a job under s-oblivious
analysis. In fact, it turns out that for a large class of locking protocols (that arguably
includes all possible “reasonable” locking protocols), the per-request pi-blocking bound
is necessarily non-optimal (w.r.t. s-oblivious analysis) under RM, deadline mono-
tonic (DM) [36], and EDF scheduling. The proof of the non-optimality of outer-lock
independence-preserving locking protocols requires the following seemingly obvious
property.
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Definition 3.1.4. Let Γ′ ⊆ Γ denote the set of shared resources currently held by
all tasks in the system. A locking protocol is non-procrastinating if any request for
a shared resource (by one of the c highest-priority pending jobs in each cluster) is
satisfied immediately if |Γ′| = 0.

I am not aware of any real-time locking protocol in the literature that does not
satisfy a request R for a shared resource by one of the c highest-priority pending jobs
when |Γ′| = 0. If non-clairvoyance is assumed, and that tasks are sporadic (i.e., we
cannot predict future job arrivals), then delaying the satisfaction of R is tantamount
to willingly wasting CPU time; this is in direct contradiction to one of the most
important goals of an effective real-time locking protocol. Non-procrastination is also
a fairly weak property as it does not impose restrictions on how to arbitrate access to
resources once contention is present.

The following parameterized task set is used in my proof of non-optimality for
outer-lock independence preservation.

Definition 3.1.5. Let τ ol(n) = {T1, . . . , Tn} be a task set of n tasks that share n
resources {`1, . . . , `n}, where n ≥ m ≥ 2, with the following properties:

• (i) `1 � `2 � . . . � `n−1 � `n,

• (ii) ∀1≤i≤n ei = 4,

• (iii) ∀1≤i≤n pi = di = ei · n · i,

• (iv) ∀1≤i<n jobs of Ti require {`i} during the first two units of their execution,
and then {`i, `i+1} during the last two units of their execution,

• (v) jobs of Tn require {`n} throughout the four units of their execution.

Theorem 3.1.1. There exists an arrival sequence of the task set τ ol(n) such that
maxTi∈τol(n) bi = Ω(n) under s-oblivious analysis for any suspension-based incremental
locking protocol that is non-procrastinating and outer-lock independence-preserving,
when scheduled under RM, DM, or EDF scheduling (with respect to each cluster).

Proof. Let ai,j denote the first arrival of Ji. Consider the arrival sequence of τ ol(n)
where ai,1 = i−2 for 2 ≤ i ≤ n and a1,1 = n−1. An example of τ ol(4) with this arrival
sequence is depicted in Fig. 3.3. At time t = 0, J2 requests and acquires `2, as we the
use of a non-procrastinating locking protocol is assumed. At time t = 1, a request for
`3 is made by J3. If J3 does not acquire `3 (and is therefore not scheduled) at t = 1,
then the blocking that results from delaying J3’s request would result in a violation of
outer-lock independence preservation as we would then have b3,2 > 0 despite `2 /∈ Dol

3 .
The same argument analogously applies to all jobs released up until t = n − 1 when
J1 arrives and issues a request R1 for `1. There are then two cases to consider: R1 is
satisfied immediately, or it is satisfied at a later time.

In the first case R1 is satisfied immediately and J1 issues a nested request R2 for
`2 at time t = n + 1. The maximum number of units of execution completed for
jobs J2, . . . , Jn up to t = n + 1 is (n − 1) · 2 + 1 = 2n − 1 for any m ≥ 2. This is
because jobs J2, . . . , Jn−1 can execute for at most 2 units of time before suspending
due to a nested request for an already held resource, and because Jn can execute for
at most 3 units of time until R2 is issued. Therefore, at the time R2 is issued, there
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Figure 3.3: One possible G-FP schedule of τ ol(4) on m = 2 processors. The jobs are
in ascending priority from top to bottom (i.e., J2 has the lowest priority, and J1 has
the highest priority).

are (
∑n

i=2 ei)− (2n− 1) = (n− 1) · 4− (2n− 1) = 2n− 3 units of execution left before
jobs J2, . . . , Jn complete and `2 becomes available for acquisition by J1. Furthermore,
as jobs J2, . . . , Jn−1 are all waiting for the job with the next-highest index to release a
resource, their executions are serialized. Thus J1 incurs at the very least 2n−3 = Ω(n)
time units of s-oblivious pi-blocking while waiting to acquire `2.

In the second case, R1 is assumed to be satisfied satisfied at time t = n − 1 + ε
where ε > 0 (i.e. not immediately). Then, J1 would begin to incur s-oblivious pi-
blocking at t = n − 1, as it is the highest-priority job and is not scheduled. This
situation cannot result in a reduction of the s-oblivious pi-blocking that J1 incurs in
the first case because (i) J1 is the highest-priority job by construction, and (ii) that
the serialization of executions described in the first case enforces a minimum of 2n− 3
units of execution before `2 is released. Therefore, the asymptotic lower-bound in
the first case still applies, and Ji still incurs a minimum of Ω(n) units of s-oblivious
pi-blocking while waiting to acquire `2.

To conclude, under a standard set of assumptions and commonly used scheduling
algorithms, any outer-lock independence-preserving protocol is necessarily non-optimal
with respect to s-oblivious pi-blocking. In the rest of this thesis, I focus on an alter-
native definition for nested independence preservation.

3.2 Group Independence Preservation

With group independence preservation, the relationships that exist among shared re-
sources and tasks are defined by relaxing Definitions 3.1.1 and 3.1.2. These relation-
ships are defined as follows.
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Definition 3.2.1. Let ◦ be a reflexive and symmetric relation on the set of shared
resources Γ. For `a ∈ Γ let `a ◦ `a, and for any `b, `c ∈ Γ let `b ◦ `c if `b � `c or `c � `b.
The transitive closure of ◦ forms an equivalence relation on the resources in Γ, denoted
with ∼. Then the equivalence class g(`a) = {`x ∈ Γ | `a ∼ `x} is the set of resources
that `a is associated with.

I refer to these equivalence classes as groups, and let G = {g1, . . . , gr} be the set of
resource groups in the system. From the definition of a group, it naturally follows that
the groups in G are disjoint, and that their union yields Γ. This definition of groups
very closely matches the notion of resource groups used in the FMLP [8].

Definition 3.2.2. For a task Ti the set Di =
⋃
`a∈γi g(`a) is the set of the shared

resources Ti is associated with.

One (possibly more intuitive) way to think about the equivalence classes described
in Definition 3.2.1, are as components in a simple undirected-graph. For example,
consider Fig. 3.4. Each vertex represents a shared resource, and there is an edge
between two vertices va and vb if `a � `b. If task a Ti accesses a shared resource,
then Ti is associated with every other resource in the corresponding component, which
follows from the necessary properties of an equivalence class (i.e., reflexivity, symmetry,
and transitivity).

`a
<latexit sha1_base64="FaBrlMC5WVLU+IGnVK0MixxVRt8=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBnRQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62uHZGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZm/ToZcITNiagllittbCRtTRZmxAZVsCN7qy+ukXat6V9Xa/XWlUc/jKMIZnMMleHADDbiDJrSAwSM8wyu8ObHz4rw7H8vWgpPPnMIfOJ8/fCiPCQ==</latexit>

`b
<latexit sha1_base64="y+tB29WL8CHI6p3dTgPYgbdVECU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBsGgXHGr7gJknXg5qUCO5qD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sce2MXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPW/YzLJDUo2XJRmApiYjJ/nQy5QmbE1BLKFLe3EjamijJjAyrZELzVl9dJu1b1rqq1++tKo57HUYQzOIdL8OAGGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AH2sjwo=</latexit>

`c
<latexit sha1_base64="D0vTNd5JSOZTpC1Ne8Dnx1WE4VM=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBmxQrrhVdwGyTrycVCBHc1D+6g9jlkYoDRNU657nJsbPqDKcCZyV+qnGhLIJHWHPUkkj1H62uHZGLqwyJGGsbElDFurviYxGWk+jwHZG1Iz1qjcX//N6qQnrfsZlkhqUbLkoTAUxMZm/ToZcITNiagllittbCRtTRZmxAZVsCN7qy+ukXat6V9Xa/XWlUc/jKMIZnMMleHADDbiDJrSAwSM8wyu8ObHz4rw7H8vWgpPPnMIfOJ8/fzCPCw==</latexit>

`d
<latexit sha1_base64="NiN6SJ4IH91sqcoAJgPOs3B87pc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJu3azSbsboRS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBVcG9f9dgobm1vbO8Xd0t7+weFR+fikrZNMMWyxRCSqG1CNgktsGW4EdlOFNA4EdoLx7dzvPKHSPJEPZpKiH9Oh5BFn1Fip3UchBuGgXHGr7gJknXg5qUCO5qD81Q8TlsUoDRNU657npsafUmU4Ezgr9TONKWVjOsSepZLGqP3p4toZubBKSKJE2ZKGLNTfE1Maaz2JA9sZUzPSq95c/M/rZSaq+1Mu08ygZMtFUSaIScj8dRJyhcyIiSWUKW5vJWxEFWXGBlSyIXirL6+Tdq3qXVVr99eVRj2PowhncA6X4MENNOAOmtACBo/wDK/w5iTOi/PufCxbC04+cwp/4Hz+AIC0jww=</latexit>

`e
<latexit sha1_base64="Tfi2No+Th0gtzhALIjTWHR/K7+w=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBjgoV9yquwBZJ15OKpCjOSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bXDsjF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IR1P+MySQ1KtlwUpoKYmMxfJ0OukBkxtYQyxe2thI2poszYgEo2BG/15XXSrlW9q2rt/rrSqOdxFOEMzuESPLiBBtxBE1rA4BGe4RXenNh5cd6dj2VrwclnTuEPnM8fgjiPDQ==</latexit>

`f
<latexit sha1_base64="ZeYweUMlteW3HEDuPfRE6IrQkDo=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBuGgXHGr7gJknXg5qUCO5qD81R/GLI1QGiao1j3PTYyfUWU4Ezgr9VONCWUTOsKepZJGqP1sce2MXFhlSMJY2ZKGLNTfExmNtJ5Gge2MqBnrVW8u/uf1UhPW/YzLJDUo2XJRmApiYjJ/nQy5QmbE1BLKFLe3EjamijJjAyrZELzVl9dJu1b1rqq1++tKo57HUYQzOIdL8OAGGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AIO8jw4=</latexit>

`a � `b

`a � `c

`c � `d

`e � `f
<latexit sha1_base64="oI3Zx8XTJ8CvwAHKwtn9vvoz+fk=">AAACRHicbZDLSgMxFIYz9VbrbdSlm2ARXJWZKiiuCm5cVrAX6JSSOT3ThmYuJBmhlD6cGx/AnU/gxoUibsV0Wkpt/SHw5zvncJLfTwRX2nFerdza+sbmVn67sLO7t39gHx7VVZxKwBrEIpZNnykUPMKa5lpgM5HIQl9gwx/cTuqNR5SKx9GDHibYDlkv4gEHpg3q2C0Phegw6qkUgGYXn3peYRXDHMMi7s4xLuLA4I5ddEpOJrpq3JkpkpmqHfvF68aQhhhpEEypluskuj1iUnMQOC54qcKEwYD1sGVsxEJU7VEWwpieGdKlQSzNiTTN6OLEiIVKDUPfdIZM99VybQL/q7VSHVy3RzxKUo0RTBcFqaA6ppNEaZdLBC2GxjCQ3LyVQp9JBtrkXjAhuMtfXjX1csm9KJXvL4uVm1kceXJCTsk5cckVqZA7UiU1AuSJvJEP8mk9W+/Wl/U9bc1Zs5lj8kfWzy8Ywq+0</latexit>

`g
<latexit sha1_base64="pnw9EKSqNepVSJ7Qs46usPVSFbc=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2A9oQ9lsJ+3azSbsboQS+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJYPZpqgH9GR5CFn1Fip3UchBqNBueJW3QXIOvFyUoEczUH5qz+MWRqhNExQrXuemxg/o8pwJnBW6qcaE8omdIQ9SyWNUPvZ4toZubDKkISxsiUNWai/JzIaaT2NAtsZUTPWq95c/M/rpSas+xmXSWpQsuWiMBXExGT+OhlyhcyIqSWUKW5vJWxMFWXGBlSyIXirL6+Tdq3qXVVr99eVRj2PowhncA6X4MENNOAOmtACBo/wDK/w5sTOi/PufCxbC04+cwp/4Hz+AIVAjw8=</latexit>

Figure 3.4: Visualization of group relations among shared resources as a simple
undirected-graph. The partial ordering used to construct the graph is depicted on
the right.

With association defined for shared resources and tasks, I now define group inde-
pendence preservation as follows.

Definition 3.2.3. Let bi,a denote the pi-blocking incurred by Ji due to requests by
any task for a shared resource `a. Under s-oblivious analysis, a locking protocol is
group independence-preserving iff `a /∈ Di implies bi,a = 0.

Stated differently, group independence is preserved if the overall s-oblivious pi-
blocking bi =

∑
a bi,a of each task does not depend on resources that the task is not

associated with.



Chapter 4

The Group Independence-Preserving
Protocol

I show that group independence-preserving protocols do not necessarily suffer from
the Ω(n) s-oblivious pi-blocking bound seen with outer-lock independence preserva-
tion. I demonstrate this through the construction of group independence-preserving
fine-grained nested locking protocol that is asymptotically optimal under s-oblivious
analysis; the Group Independence-Preserving Protocol (GIPP). In this section I will
give a high-level overview of the GIPP before constructing it in the subsequent sections
of this thesis. The construction of GIPP relies on both the RNLP and RRPD; the
necessary background on them is presented in Section 2.6.1 and Section 2.6.2, respec-
tively. The background material on the RNLP and RRPD includes their structure,
rules, properties, necessary lemmas, and necessary theorems.

The GIPP At a very high level, the GIPP works as follows. For each group, a
separate instance of the RNLP is instantiated. Crucially, the choice of token lock and
RSM used to instantiate each instance of the RNLP must not violate group indepen-
dence preservation, that is, any progress mechanisms employed must lend themselves
to group independence preservation. Progress mechanisms like priority boosting that
rely on elevating a job’s priority can cause jobs that never request shared resources to
incur release-blocking, which precludes the property of group independence preserva-
tion; this is highly undesirable in the presence of latency-sensitive tasks. Furthermore,
progress mechanisms that rely on the ability to directly compare priorities across clus-
ters can result in unbounded pi-blocking (i.e., the blocking depends on some other
task’s WCET) [9]. The challenges to realizing the GIPP are then: (i) construct an
appropriate token lock and RSM, (ii) prove the token lock and RSM satisfy the re-
quired properties of the RNLP, (iii) prove the optimality of the GIPP under s-oblivious
analysis, and (iv) prove that the GIPP is group independence-preserving.

4.1 The Clustered k-Exclusion
Independence-Preserving Protocol

To realize the GIPP I use a single token lock that is common to all the instantiations
of the RNLP. If there are r groups (and therefore r instances of the RNLP), then a
token lock that arbitrates access to r distinct token types, where each token type has
m replicas, will suffice. However, as stated earlier, any such token lock must lend itself
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to independence preservation. To the best my knowledge, no such k-exclusion locking
protocol (i.e., token lock) exists for clustered scheduling. To realize such a token lock,
I generalize the R2DGLP [54], which satisfies the requirements just described, with
the exception that it was designed for globally-scheduled systems. Ward, Elliott, and
Anderson use the term replica instead of token when discussing shared resources in
the context of RRPD and R2DGLP; I we will the two terms interchangeably.

As discussed in Section 2.6.2, the R2DGLP uses RRPD as a progress mechanism.
Thus, to generalize the R2DGLP to clustered scheduling, the requirement that pri-
orities across all jobs are comparable must be lifted. Additionally, RRPD alone is
not enough to ensure progress [54], which means that replica-holders (i.e., token hold-
ers), are not guaranteed to be scheduled without the aid of an additional progress
mechanism. The R2DGLP solves this with priority inheritance, as the protocol tar-
gets globally-scheduled systems. However, the R2DGLP does not strictly mandate
the use of priority inheritance, instead, any locking protocol that utilizes RRPD must
satisfy property P1, which was stated in the background section for the R2DGLP
(Section 2.6.2).

I introduce the Clustered k-Exclusion Independence-Preserving Protocol (CKIP) as
a generalization of R2DGLP that is non-nested independence preserving, asymptoti-
cally optimal under s-oblivious analysis, and employable under clustered scheduling.
The CKIP is realized by having tasks compete amongst each other in their home clus-
ters under the rules of RRPD, but not across clusters. This is possible as priorities
can be directly compared within each cluster. However, this means that priority in-
heritance can no longer be used to ensure that replica holders make progress. To this
end, I employ AI (Section 2.5.1). I will redefine AI in the context of the CKIP and
GIPP as replicas (i.e., tokens) must now be taken into account; the definition differs
only slightly from the definition in Section 2.5.1.

Definition 4.1.1. Let Ji be a job that holds a replica of a shared resource `a that
has k ≥ 1 replicas, and Wi be the set of jobs across all clusters waiting to a acquire a
replica of `a. Under allocation inheritance, if Ji is not scheduled and there exists a job
Jk ∈ Wi ∪ {Ji} that has sufficient priority to be scheduled in C(Tk), then Ji migrates
to C(Tk) (if necessary) and runs with Jk’s priority. While Ji executes in C(Tk) with
Jk’s priority, Jk is called an allocation donor. Once Ji releases the replica of `a, it
migrates back to C(Ti) (if necessary) and resumes execution when it has sufficient
priority. Finally, Ji’s allocation donor (if any) ceases to be an allocation donor when
Ji releases the replica of `a.

One might ask themselves if it is possible to realize the CKIP using a progress
mechanism that does not require inter-cluster migrations; unfortunately, this cannot
be done with the model and definitions used in this thesis. In fact, it is not possible for a
semaphore-based protocol to avoid inter-cluster migrations, have bounded pi-blocking,
and be independence-preserving [9].

Now armed with an independence-preserving progress mechanism [9], I can con-
struct the CKIP by adapting the rules that define the R2DGLP [54, Section 4]. The
rules and structure of the CKIP differ enough from the R2DGLP that its rules do not
directly apply. Therefore, I present the modified rules and structure in full below.

Structure Tasks compete for a set of q shared resources Γ = {`1, . . . , `q} where
each resource `a has k ≥ 1 replicas. Nested requests are not permitted. Each of the
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head of queue holds replica

requests per replica

replicastriage

Figure 4.1: Queuing structure of the CKIP. Each of the m/c clusters can have at most
c incomplete requests for a replica of a given shared resource. Requests are enqueued
into the replica queue with the least number of requests in it.

k replicas has an associated FIFO queue of size dm/ke that jobs are placed in when
requesting a replica; I use KQa to refer to any one of the queues for `a. The queuing
structure of the CKIP closely resembles the R2DGLP and is depicted in Fig. 4.1. The
following rules for CKIP focus on a single replicated resource `a ∈ Γ, though they
directly apply to all resources in Γ.

K1 Jobs issue requests subject to the rules of RRPD. When Ji issues a request for
`a, it is enqueued into the KQa with the fewest number of requests in it, and
suspends while it waits.

K2 Ji’s request for `a is satisfied when it becomes the head of KQa, and thus becomes
ready.

K3 While Ji is the head of KQa, it benefits from allocation inheritance, but only with
respect to the other jobs in the same KQa as Ji (i.e., Wi is comprised of the jobs
in KQa that Ji is the head of).

K4 When Ji’s request for `a is completed, it is dequeued from KQa and the new head
(if any) acquires the replica. If Ji had benefited from allocation inheritance, it
returns to its home cluster and assumes its former (possibly donated) priority.
If Ji has a priority donor due to RRPD in C(Ti), the donor may now issue a
request subject to the rules of RRPD.

Now that the rules of the CKIP are defined, I use the remainder of this section to
prove the following.

• The CKIP ensures Property P1, which is required by any locking protocol that
uses RRPD (Section 2.6.2).

• Jobs that interact with the CKIP make progress.

• The CKIP ensures Property T1 and Property T2, which are mandatory proper-
ties that any token lock to be used with the RNLP must ensure (Section 2.6.1).
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• The CKIP is asymptotically optimal w.r.t. s-oblivious pi-blocking.

• The CKIP is both non-nested independence-preserving and group independence-
preserving.

Lemma 4.1.1. Rule K3 ensures property P1.

Proof. If Ji in KQa has sufficient priority to be scheduled in C(Ti), then under AI,
the head of KQa can migrate to C(Ti) and execute with Ji’s priority (if necessary).
Therefore, the replica-holder is scheduled and Ji makes progress.

Lemma 4.1.2. A job Ji that incurs pi-blocking while acting as a priority donor under
the rules of RRPD makes progress.

Proof. Let Jx be the job that Ji donates its priority to. Then, Jx has an incomplete
request for a replica of a shared resource `a that both jobs require. Because Ji has
sufficient priority to be scheduled in C(Ti), then Jx does as well, as C(Ti) = C(Tx).
Therefore, Jx makes progress by Lemma 4.1.1, which means Ji does as well.

Lemma 4.1.3. The CKIP ensures property T1 with respect to each replicated re-
source.

Proof. RRPD is orchestrated on a per-cluster basis under the CKIP, and so we can
reason about each cluster individually as if it were a lone globally-scheduled system
with c processors. Then, by Lemma 2.6.1 there are at most c incomplete requests
for a given replicated resource per cluster, and therefore at most m across a clustered
system as m

c
· c = m.

Lemma 4.1.4. The CKIP ensures property T2.

Proof. By Lemma 2.6.2, a job Ji that requires a replica of a shared resource `a has an
incomplete request, or is a priority donor. By Lemma 4.1.2, Ji makes progress while
acting as a priority donor, and by Lemma 4.1.1, Ji makes progress while it has an
incomplete request. Thus, Ji makes progress if it incurs pi-blocking while waiting for
a token (i.e., replica of `a).

Lemma 4.1.5. The size of KQa need not be larger than dm/ke.

Proof. By Lemma 2.6.1 there are never more than c incomplete requests per cluster,
and as there are m

c
clusters in total, there are never more than m

c
· c = m incomplete

requests for `a at any point in time. By Rule K1, a request is always enqueued into
the KQa with the fewest number of requests in it. Thus, if KQa needed to larger than
dm/ke, there would necessarily need to be more than m incomplete requests for the
shared resource. Contradiction.

Lemma 4.1.6. A job Ji incurs at most (dm/ke − 1) · Lmax s-oblivious pi-blocking in
KQa.

Proof. By Lemma 4.1.5, there are at most dm/ke− 1 jobs ahead of Ji in KQa, and by
Lemma 4.1.1 the head of KQa is scheduled if any other job in KQa has sufficient priority
to be scheduled in its own cluster. Therefore, a job incurs at most (dm/ke − 1) · Lmax

s-oblivious pi-blocking while in KQa.
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Theorem 4.1.1. A job Ji incurs at most (2 dm/ke − 1) · Lmax s-oblivious pi-blocking
while waiting to acquire a replica of a shared resource `a.

Proof. By Lemma 2.6.3 a priority donor can only be pi-blocked for one critical section
plus the maximum amount of time a job can be pi-blocked with an incomplete request,
and by Lemma 4.1.6 a jobs incurs at most (dm/ke − 1) · Lmax s-oblivious pi-blocking
while in KQa. Thus, a priority donor incurs at most dm/ke · Lmax s-oblivious pi-
blocking while waiting to acquire `a. Furthermore, by Lemma 2.6.2 a job that incurs
s-oblivious pi-blocking while waiting for a replica of a shared resource `a either has an
incomplete request for `a, or it is a priority donor. Thus while waiting to acquire `a a
job Ji can incur at most the sum of the pi-blocking it incurs as a priority donor, and
the pi-blocking it is subject to while traversing KQa, which is dm/ke ·Lmax +(dm/ke−
1) · Lmax = (2 dm/ke − 1) · Lmax.

Theorem 4.1.2. The CKIP is non-nested independence-preserving under any JLFP
scheduler.

Proof. Under the CKIP, requests for replicas of shared resources are arbitrated under
the rules of RRPD in each cluster. The rules of RRPD are such that jobs do not incur
pi-blocking for resources they do not access [54]. Thus, any pi-blocking Ji incurs due to
requests for a resource `a /∈ γi would need to be the result of the use of AI as a cross-
cluster progress mechanism. However, any job that benefits from AI only executes
with the priority of another job currently waiting on a replica of the same resource,
which precludes Ji from incurring pi-blocking due to jobs inheriting allocations [9].
Thus, if Ni,a = 0 then bi,a = 0.

This concludes the section on the CKIP. In the following section a RSM is defined,
which is the last component required to realize the GIPP.

4.2 An Independence-Preserving RSM
The GIPP requires that its RSM lends itself to independence preservation, and no
such suitable RSM for clustered scheduling has been proposed in prior work. Thus, I
introduce the Allocation Inheritance Resource Satisfaction Mechanism (AI-RSM). The
AI-RSM applies to clustered scheduling, and utilizes AI to ensure progress among jobs
competing for shared resources. Let ts(Ji) be the time that Ji acquired its token (and
therefore entered the RSM), and let sr(Ji, t) be the set of resources Ji holds at time t.
The following equation denotes the set of jobs that can prevent Ji from acquiring `a
at time t, which follows from the rules of the RNLP.

Ai,a,t = {Jk | ts(Jk) < ts(Ji) ∧ (`a ∈ sr(Jk, t) ∨ ∃`b ∈ sr(Jk, t) s.t. `b � `a)} (4.1)

I now define the AI-RSM and subsequently prove that it ensures Property R1
(Section 2.6.1), which any RSM to be used with the RNLP must ensure. The AI-RSM
is defined by the following rule.

A1 When the AI-RSM prevents Ji from acquiring a shared resource `a at time t,
Ji donates its allocation to the job in Ai,a,t with the earliest timestamp under
the rules of AI.
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Lemma 4.2.1. The AI-RSM ensures Property R1 for clustered scheduling when wait-
ing is realized by suspending.

Proof. Let Ji be a job that is pi-blocked by the RSM at time t while it waits to acquire
a shared resource `a. Then, there must exist some job Jk ∈ Ai,a,t that prevents Ji
from acquiring `a by the rules of the RNLP. By Rule A1, the job Jk ∈ Ai,a,t with the
earliest timestamp is eligible to inherit Ji’s priority in C(Ti). Since Ji incurs s-oblivious
pi-blocking, it has one of the c highest priorities in its cluster, and hence the inherited
priority enables Jk to be scheduled in C(Ti). Thus, at least one job preventing Ji from
acquiring `a is scheduled and Ji therefore makes progress.

I have now constructed both a group independence-preserving token lock, and an
RSM with an independence-preserving progress mechanism. In the following section I
use these two components to realize the GIPP.

4.3 Structure and Analysis of The GIPP
In this section I define the structure of the GIPP. I then subsequently prove its op-
timality with respect to s-oblivious pi-blocking, and that it is group independence-
preserving.

Structure There are m tokens for each group gx ⊆ Γ; a token for gx is denoted
with λx. A single instance of the CKIP arbitrates access to the set Λ = {λ1, . . . , λr} of
replicated tokens, and an instance of the RNLP with the AI-RSM is instantiated for
each group. The CKIP instance serves as a common token lock among all the instances
of the RNLP. To execute an outermost critical section under the GIPP for resources
in gx a job must (i) compete for and acquire a token λx under the CKIP, (ii) compete
in gx’s instance of the AI-RSM under the rules of the RNLP (Section 2.6.1), and (iii)
release λx upon completing its outermost critical section and exiting the AI-RSM. The
queuing structure of the GIPP is depicted in Fig. 4.2.

Theorem 4.3.1. The maximum amount of s-oblivious pi-blocking incurred per out-
ermost request under the GIPP is (2m− 1) ·Lmax = O(m) under any JLFP scheduler.

Proof. The CKIP satisfies property T1 by Lemma 4.1.3, and the AI-RSM satisfies
property R1 by Lemma 4.2.1. Therefore, the maximum amount of s-oblivious pi-
blocking a job incurs while in the AI-RSM is LRSM = (m− 1) ·Lmax by Theorem 2.6.1,
as the corresponding RNLP proof generalizes to any protocol that satisfies these two
properties.

Under the rules of the RNLP, a job holds a token for the entire duration it is
in the RSM, and releases its token after completing its outermost critical section.
The RNLP proof of Theorem 2.6.1 establishes that a job is pi-blocked for at most
m − 1 outermost critical sections while in any RSM. Thus, after a job completes its
outermost critical section, the maximum amount of time the job holds a token is
Ltoken = m ·Lmax. By Theorem 4.1.1, a job waiting to acquire a token under the CKIP
incurs at most (2 dm/ke− 1) ·Ltoken units of s-oblivious pi-blocking. Under the GIPP,
there are m tokens for each group (i.e., k = m), so the pi-blocking incurred while
waiting for a token simplifies to Ltoken as (2 dm/me−, 1) = 1. The total s-oblivious
pi-blocking a job occurs per outermost request is then the sum of the pi-blocking
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RSM queues for 
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Figure 4.2: Queuing structure of the GIPP. A request for a token of a group is first
arbitrated by the CKIP before the request is passed to the group’s corresponding
instance of the RNLP.

incurred while waiting to acquire a token, and while competing in the AI-RSM, which
is Ltoken + LRSM = m · Lmax + (m− 1) · Lmax = (2m− 1) · Lmax.

Theorem 4.3.2. The GIPP is group independence-preserving under any JLFP sched-
uler.

Proof. Under the CKIP, nested requests are not permitted, so each shared resource
(e.g., token type) forms its own group. When each group consists of a single resource,
the definition of group independence preservation trivially reduces to non-nested in-
dependence preservation. Thus, it follows that the CKIP is group independence-
preserving.

By the structure of the GIPP a job interacts with the CKIP for the entire duration
it interacts with the GIPP, and as just established the CKIP is group independence-
preserving with respect to tokens. Thus, to prove the GIPP is group independence-
preserving it suffices to show that the CKIP remains group independence-preserving
while token holders compete for shared resources in the AI-RSM. I prove this by
contradiction.

Then, a job Ji that does not request a token λx for a group gx incurs pi-blocking
due to a request for λx from a job Jk. Under the AI-RSM, Jk’s priority is only ever
elevated to be that of another job competing for resources in gx. Thus, if Jk’s effective
priority in C(Ti) is greater than Ji’s, there must be another job Jh in C(Ti) that
requires resources in gx and has a higher base-priority than Ji. This precludes Ji from
incurring s-oblivious pi-blocking due to Jk’s request for λx. Contradiction.

In special cases, the GIPP emulates the behavior of the RNLP and the OMIP. When
there is just a single group (i.e., r = 1) the GIPP effectively reduces to the RNLP in
the sense that there is just a single, global token lock. Conversely, when r = |Γ| the
GIPP behaves like the OMIP. These cases are examined further in Section 6.3.



Chapter 5

Fine-Grained Pi-Blocking Analysis

I next introduce a fine-grained, non-asymptotic pi-blocking analysis for the GIPP,
which is formulated as a Linear Programming (LP) problem as in prior work [9, 10,
55]. The asymptotic bound presented in Section 4.3 is coarse-grained as it does not
reflect the exact resources each task requests, individual critical section lengths, nor
the frequency of critical sections. The following analysis is fine-grained in the sense
that it considers these workload-specific aspects to obtain a less pessimistic, but still
safe, upper-bound on s-oblivious pi-blocking.

In the following, let Ti denote the task under analysis and let Ji denote an arbitrary
job of Ti. For each other task Tx, I let θix denote a bound on the maximum number
of jobs of Tx that overlap with Ji (i.e., that are pending while Ji is pending). Let Ri

and Rx be the maximum response times of Ti and Tx, respectively. The bound is then
formulated as follows [10, 13].

θix =

⌈
Ri +Rx

px

⌉
(5.1)

I denote Tx’s yth outermost critical section as Ox,y, its length as LOx,y, the set of
resources it accesses as Sx,y, and define Ox(g) , {Ox,y | Sx,y ⊆ g} to be the outermost
critical sections of task Tx that pertain to resources in group g. Note that the index
y is used only for enumeration purposes and does not imply an order; each job of Tx
may execute its outermost critical sections in any order. For each task Tx 6= Ti, each
outermost request Ox,y, and v ∈ {1, . . . , θix}, I introduce two real-valued variablesXT

x,y,v

and XR
x,y,v, each with domain [0, 1]. These variables are called blocking fractions [10]

and serve to encode the portion of Tx’s vth overlapping instance of Ox,y that contributes
to the pi-blocking that Ji incurs. I useXT

x,a,v andXR
x,a,v to respectively encode the token

and RSM blocking that Ji incurs, where token blocking refers to the time spent waiting
to acquire a token, and RSM blocking refers to time spent waiting for a resource within
the AI-RSM.

With these definitions in place, the pi-blocking incurred by Ji can be stated as

bi =
∑
Tx 6=Ti

∑
Ox,y

θix∑
v=1

(XT
x,y,v +XR

x,y,v) · LOx,y (5.2)

By interpreting Eq. (5.2) as the objective function of an LP maximization prob-
lem, I obtain an upper bound bi on the maximum pi-blocking incurred by any Ji [9,
10, 55]. To avoid excessive pessimism, I introduce in the following LP constraints that
reflect both the invariants of the GIPP and properties of the specific task set under
analysis.
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To start, I prevent any blocking critical section from being counted twice.

Constraint 5.0.1. ∀Tx 6= Ti : ∀Ox,y : ∀v : XT
x,y,v +XR

x,y,v ≤ 1

Proof. A single critical section of Tx cannot cause Ji to experience token blocking and
RSM blocking simultaneously : to wait for a resource within the AI-RSM, Ji must
already hold a token, but while Ji competes for a token it cannot yet interact with
the RSM. Thus, the combined token and RSM blocking induced by one of Tx’s critical
sections cannot exceed the length of the critical section (i.e., the blocking fractions
sum to at most one).

Next, I bound the maximum amount of token blocking that Ji incurs. In prepara-
tion, let τk be the set of tasks assigned to cluster Ck, and τ ′k = τk \ {Ti}. Furthermore,
Eq. (5.3) defines the number of times Ji issues an outermost request for a resource in
g, and Eq. (5.4) defines the number of tasks in Ck that request a resource in g. Based
on these definitions, I state a bound on the number of times that Ji must wait for a
token. In Eq. (5.5), let k denote the index of C(Ti).

φi,g , |{Oi,y | Si,y ∩ g 6= ∅}| (5.3)

βk,g ,

∣∣∣∣∣∣
Tx

∣∣∣∣∣∣ Tx ∈ τk ∧
⋃
Ox,y

Sx,y ∩ g 6= ∅


∣∣∣∣∣∣ (5.4)

Wi,g ,

{
0 βk,g ≤ c

min(φi,g, φ
′
i,g) otherwise

where φ′i,g ,

∑
Tx∈τ ′k

(φx,g · θix)

− c+ 1

(5.5)

Lemma 5.0.1. Wi,g upper-bounds the number of times Ji must wait for a token of
group g.

Proof. By case analysis. Let k denote the index of C(Ti). First, if βk,g ≤ c, then there
are at most c tasks in C(Ti) that ever require a token for group g (including Ti). There
are never more than c token holders per cluster under the CKIP, which effectively
reserves c tokens for each cluster. Thus, whenever Ji requires a token for group g, one
is always available, and Ji never needs to wait for a token: Wi,g = 0 if βk,g ≤ c.

Otherwise, if βk,g > c, then Ji requires a token no more than φi,g times, and
hence clearly Wi,g ≤ φi,g. To obtain Wi,g ≤ φ′i,g, consider the number of times that
other tasks require a token while Ji is pending, which is bounded by

∑
Tx∈τ ′k

(φx,g · θix).
Since Ji must wait for a token only if all c tokens are currently held by other tasks,
the worst case occurs when c − 1 tokens are held “indefinitely” (i.e., if they remain
unavailable throughout the interval during which Ji is pending) and the remaining
φ′i,g =

(∑
Tx∈τ ′k

(φx,g · θix)
)
− c + 1 requests must all share a single token, and thus

Wi,g ≤ φ′i,g.

I further restrict under which conditions Ji incurs token blocking with the following
lemma and constraint.

Lemma 5.0.2. Ji incurs token blocking (i.e., if it incurs pi-blocking while waiting to
acquire a token for a group g) only if it is a priority donor under the rules of RRPD.
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Proof. Recall that the GIPP allocates group tokens using the CKIP, and that the
CKIP employs RRPD. As there are k = m tokens per group (i.e., replicas per token
type), the CKIP’s per-replica FIFO queues have length

⌈
m
k

⌉
= 1. Since by Rule K2

the head of each per-replica FIFO queue holds the replica (i.e., a token), and jobs
enter a queue immediately when they issue a request (Rule K1), it follows that Ji can
be waiting for a token only before it issues its request for a token, that is, while it
serves as a priority donor under the rules of RRPD in the time span between requiring
a token and actually issuing a request (recall Fig. 2.14).

Lemmas 5.0.1 and 5.0.2 then allow a constraint to be established on token blocking
due to each other task.

Constraint 5.0.2.

∀g ∈ G : ∀Tx 6= Ti :
∑

Ox,y∈Ox(g)

θix∑
v=1

XT
x,y,v ≤ Wi,g

Proof. Suppose not. Then there exists a task Tx that token-blocks Ji with more
than Wi,g outermost critical sections (w.r.t. some group g). If Wi,g = 0, then by
Lemma 5.0.1 Ji must never wait to acquire a token for group g, which immediately
yields a contradiction. Hence assume Wi,g > 0. As Ji waits for a token for g at most
Wi,g times (Lemma 5.0.1), this implies that there exists an outermost critical section
Oi,z executed by Ji such that Ji is delayed, while waiting to acquire a token for g in
preparation of Oi,z, by at least two outermost critical sections of Tx. By Lemma 5.0.2,
Ji is a priority donor while it incurs token blocking. According to the rules of RRPD
(recall Section 2.6.2), Ji becomes a priority donor at most once per request, and only
for a single other request: either immediately when Ji requires a token to commence
Oi,z, or not at all. It follows that Tx must pi-block Ji with two distinct outermost
critical sections while Ji continuously serves as the priority donor of some job Jl.
Since under the rules of RRPD Ji ceases to be a priority donor as soon as Jl finishes
its outermost critical section (i.e., when Jl releases its token), Jl cannot be a job of
Tx. Hence there remains only one other way for an outermost critical section of Tx
to delay Ji, namely by delaying one or more requests of Jl within the RSM, which
transitively causes Ji to incur pi-blocking. Consider the later of Tx’s two outermost
critical sections that cause Ji to incur pi-blocking while donating its priority to Jl.
Since it is the second outermost critical section of Tx in this interval, Tx necessarily
must have acquired a token for group g strictly after the beginning of the interval, when
Jl was already holding its token. However, the RSM satisfies resource requests strictly
in order of increasing token-acquisition timestamps, and thus Tx’s second outermost
critical section cannot delay Jl. Contradiction.

I similarly bound the aggregate token blocking across all tasks in each cluster as
follows.

Constraint 5.0.3.

∀g ∈ G : ∀k ∈ {1, . . . , m
c
} :

∑
Tx∈τ ′k

∑
Ox,y∈Ox(g)

θix∑
v=1

XT
x,y,v ≤ Wi,g ·min(c, βk,g)
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Proof. Again the case of Wi,g = 0 is trivial; hence assume Wi,g > 0 and suppose the
invariant does not hold. Then analogously to the proof of Constraint 5.0.2, there exists
a contiguous interval [t1, t2) and a cluster Ck such that both (i) Ji serves as the priority
donor of some job Jl throughout [t1, t2), and (ii) Ji incurs pi-blocking during [t1, t2)
due to at least min(c, βk,g)+1 outermost critical sections executed by tasks in τk. Also
analogously to the proof of Constraint 5.0.2, no task delays Ji with more than one
outermost critical section during [t1, t2). Because the RSM satisfies requests strictly
in order of increasing token-acquisition timestamps, any job that delays Jl within the
RSM (and hence transitively causes Ji to incur token blocking) must have acquired its
token for group g before Jl did so, and hence no later than at time t1. Furthermore, any
such job necessarily releases its token only some time after t1. At time t1 there hence
exist at least min(c, βk,g) + 1 token-holding jobs in cluster Ck. However, the CKIP
ensures that no more than c jobs in Ck hold a token at any time, and by definition at
most βk,g tasks in τk require a token for group g. Contradiction.

This concludes the constraints on token blocking. I next constrain RSM blocking,
that is, the pi-blocking incurred by Ji while it holds a token and waits for individ-
ual resources. I first introduce two necessary lemmas, and then constraint the RSM
blocking that Ji incurs on a per-cluster basis, and subsequently on a per-task basis.

Lemma 5.0.3. While Ji executes an outermost critical section Oi,w it can be RSM-
blocked by the execution of at most one outermost critical section of Tx.

Proof. Suppose not. Then while Ji executes Oi,w it is pi-blocked by two outermost
critical sections Ox,y and Ox,z of Tx. Only upon completion of Ox,y can Tx begin the
execution of Ox,z. A new token-acquisition timestamp is recorded when Tx acquires
a token during the execution of Ox,z. However, this timestamp will be strictly larger
than the token-acquisition timestamp recorded during the execution of Oi,w. Thus, all
requests Ji issues during the execution of Oi,w will be satisfied before any request Tx
issues during the execution of Ox,z as the RSM satisfies requests in order of increas-
ing token-acquisition timestamps. This precludes Ox,z from contributing to the RSM
blocking Ji incurs. Contradiction.

Lemma 5.0.4. Let Oi,w and Oi,y be two outermost critical sections of Ji, and Ox,z

be an outermost critical section of Tx. If Ji incurs RSM blocking while executing Oi,w

due to the execution of Ox,z, then the execution of Ox,z cannot contribute to the RSM
blocking Ji incurs while Ji executes Oi,y.

Proof. If the execution of Ox,z contributes to the RSM blocking Ji incurs while Ji
executes Oi,w, then the token-acquisition timestamp recorded during the execution of
Oi,w is less than the token-acquisition timestamp recorded during the execution of Ox,z.
As the RSM satisfies requests in order of increasing token-acquisition timestamps, Tx
necessarily finishes executingOx,z before Ji finishes executingOi,w. Thus, the execution
Ox,z completes before the execution of Oi,y begins, which precludes Ji from incurring
RSM blocking due to the execution of Ox,z while Ji executes Oi,y.

Constraint 5.0.4.

∀g ∈ G : ∀k ∈ {1, . . . , m
c
} :

∑
Tx∈τ ′k

∑
Ox,y∈Ox(g)

θix∑
v=1

XR
x,y,v ≤

{
φi,g ·min(c, βk,g) Ti /∈ τk
φi,g ·min(c− 1, βk,g − 1) otherwise
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Proof. If φi,g = 0, then Ji does not access resources in group g and the invariant is
trivial. Hence assume otherwise and suppose the invariant does not hold. First consider
the case Ti /∈ τk: then there exists an interval [t1, t2) during which Ji holds a token
for group g such that Ji incurs RSM blocking due to more than min(c, βk,g) outermost
critical sections executed by jobs in Ck. Analogously to the proof of Constraint 5.0.3,
it follows that more than min(c, βk,g) jobs must hold a token for group g at time t1,
which is impossible. In the second case, if Ti ∈ τk, then Ji necessarily holds one of the
c available tokens (otherwise it could not interact with the RSM), so that there are
only c− 1 tokens available to other tasks, and only βk,g − 1 other tasks in τk that are
also accessing resources in group g.

Constraint 5.0.5.

∀g ∈ G : ∀Tx 6= Ti
∑

Ox,y∈Ox(g)

θix∑
v=1

XR
x,y,v ≤ min(φi,g, φx,g · θix)

Proof. Proof by case analysis. Consider the case when φi,g < φx,g ·θix. By Lemma 5.0.3
Ji is not RSM-blocked by two distinct outermost critical sections of Tx. Thus, at most
φi,g outermost critical sections of Tx contribute to the RSM blocking that Ji incurs.

Next consider when φi,g ≥ φx,g ·θix. By Lemma 5.0.4 two distinct outermost critical
sections of Ji cannot be RSM-blocked by a single outermost critical section of Tx. Thus,
at most φx,g · θix outermost critical sections of Tx contribute to the RSM blocking that
Ji incurs.

I next constrain RSM blocking in a more detailed fashion by considering which
critical sections actually conflict within the RSM. The resulting constraint is essential
to realizing the benefits of the increased parallelism in nested locking protocols (relative
to coarse-grained group-locking) at analysis time, and not just at runtime. To this
end, some further terminology and notation are required. First, I say that a set of
resources s is possibly conflicting with another set of resources s′ if either (i) s∩ s′ 6= ∅
or (ii) ∃`b ∈ s, `a ∈ s′ such that `a � `b. Second, Eq. (5.6) counts the number
of outermost critical sections of Ti which need resources that the RSM may have to
withhold due to other jobs holding resources in s. Finally, the definition in Eq. (5.7)
denotes the set of all combinations of resources in group g acquired by other tasks.
Based on these definitions, I constrain RSM blocking as follows.

Fi(s) , |{Oi,y | Si,y possibly conflicts with s}| (5.6)

Si(g) , {Sx,y | Tx 6= Ti ∧ Sx,y ∩ g 6= ∅} (5.7)

Constraint 5.0.6.

∀g ∈ G : ∀s ∈ Si(g) : ∀k ∈ {1, . . . , m
c
} :

∑
Tx∈τ ′k

∑
Ox,y s.t.
Sx,y⊆s

θix∑
v=1

XR
x,y,v ≤

{
Fi(s) ·min(c, βk,g) Ti /∈ τk
Fi(s) ·min(c− 1, βk,g − 1) otherwise

Proof. Consider any group g, set of resources s ∈ Si(g), and cluster Ck. For Ji to incur
RSM blocking when issuing a request for some resource `b ∈ g, there must exist a job
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Jx with an earlier token-acquisition time that either already holds `b, or that holds
a resource `a ∈ g such that `a � `b. In other words, Ji incurs RSM blocking only if
{`b} is possibly conflicting with the set of resources already held by jobs with earlier
timestamps. Recall that Fi(s) counts the number of outermost critical sections of Ti
accessing resources that are possibly conflicting with s. It follows that Ji executes
at most Fi(s) outermost critical sections that may encounter RSM blocking due to
outermost critical sections of tasks in τ ′k that access s or a subset of s (i.e., the requests
represented on the left-hand side of the constraint). As in the proof of Constraint 5.0.4,
it is easy to show that no more than min(c, βk,g) (respectively, min(c − 1, βk,g − 1))
outermost critical sections can cause RSM blocking per each outermost critical section
of Ji if Ti /∈ τk (respectively, Ti ∈ τk). The bound follows.

Finally, I apply the logic in Constraint 5.0.6 to bounding the RSM blocking Ji
incurs on a per-task basis w.r.t. possibly conflicting resource requests.

Constraint 5.0.7.

∀g ∈ G : ∀Tx 6= Ti : ∀s ∈ Si(g) :
∑

Ox,y s.t.
Sx,y⊆s

θix∑
v=1

XR
x,y,v ≤ Fi(s)

Proof. This proof follows analogously from Constraint 5.0.6; Ji executes at most Fi(s)
outermost critical sections that may encounter RSM blocking due to outermost critical
sections of Tx that accesses s or a subset of s.

This concludes my fine-grained analysis of the GIPP. The analysis as presented
in this thesis contains two constraints not seen in the original work [43]; they are
Constraint 5.0.5 and Constraint 5.0.7. In the next chapter I report on an empirical
evaluation of the GIPP and two baseline protocols using the just-presented analysis.



Chapter 6

Schedulability Experiments

In this chapter I present the results of large-scale schedulability experiments I con-
ducted to compare the GIPP against the OMIP and the RNLP. The goal of these
experiments is to see how these protocols effect the schedulability of task sets when a
fine-grained (i.e., non-asymptotic) analysis is applied. As all three of these protocols
are asymptotically optimal w.r.t. s-oblivious pi-blocking, a naive schedulability anal-
ysis can safely inflate the WCETs of a given task set by the appropriate worst-case
upper-bounds on s-oblivious pi-blocking. However, such an analysis would not only be
overly pessimistic (in the general case), but it would also fail to provide a meaningful
comparison on how the three protocols effect the schedulability of task sets with dif-
ferent properties. For example, task sets with latency-sensitive tasks, or task sets with
low contention for all but a few shared resources.

I chose to compare the GIPP against the OMIP and the RNLP as (i) they are
both asymptotically optimal with respect to s-oblivious pi-blocking, (ii) the OMIP [9]
is the only prior independence-preserving locking protocol for clustered scheduling, and
(iii) the RNLP [53] is the only prior fine-grained nested locking protocol that ensures
asymptotically optimal pi-blocking bounds under clustered scheduling.

To conduct meaningful schedulability experiments, a fine-grained analysis of the
OMIP and the RNLP is also required. The OMIP has such an analysis [9], also
formulated as an LP, which is used in these experiments. However, for the RNLP, there
are surprisingly no fine-grained bounds available in prior work. I therefore had to adapt
the GIPP’s fined-grained analysis to the RNLP. To this end, I created an instantiation
of the RNLP called the CA-RNLP. The following describes this instantiation and
highlights some important details about how the GIPP’s analysis can be applied to
the CA-RNLP.

• The CA-RNLP uses the CKIP as its token lock, and the AI-RSM as its RSM.

• The RNLP uses a single global token-lock, and thus so does the CA-RNLP.

• In order to apply the GIPP’s fine-grained analysis to the CA-RNLP, one must
presume that all resources belong to a single group, as there is only one token
lock. A partial ordering on resources is still constructed as this is required by
the RNLP, but the ordering is not used to split the resources into groups.

The basic setup of the experiments is as follows. Large numbers of task sets were
generated with Emberson, Stafford, and Davis’s method [25] via the SchedCAT [12]
library; let τ be one of these task sets. For each of the three protocols the corresponding
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fined-grained analysis is applied to τ , the WCETs of the tasks in τ are inflated by the
produced blocking bounds, and then a schedulability test is applied to τ . In the rest of
this chapter I will introduce some necessary definitions, discuss how the experiments
presented in this thesis differ from the experiments presented in the original work [43],
define the setup of the experiments in detail, and finally discuss the results.

The experiments in this thesis will consider the resource access patterns of task sets,
i.e., which resources a task issues requests for and with what frequency. The following
equation defines the request symmetry ratio, which is a measure of how similar the
resource access patterns of two given tasks are.

symr(Ti, Tk) ,

∑
`a∈γi∩γk

Ni,a +Nk,a

Ni +Nk

(6.1)

Two tasks Ti and Tk with a small request symmetry ratio do not often compete with
each other (if at all) for shared resources under the three protocols being examined,
which motivates the following definition.

Definition 6.0.1. Ti and Tk have highly asymmetric access patterns (HAAPs) if
symr(Ti, Tk) < x, for a given threshold x. Otherwise, if symr(Ti, Tk) ≥ x, then
they are said to have uniform access patterns (UAPs).

To build an intuition for HAAPs, consider the following.

• Two jobs Ji and Jk compete for three shared resources `1, `2, and `3.

• Ji issues Ni,1 ≥ 1 outermost requests for `1, and during one of these requests Ji
issues a nested request for `3.

• Jk issues Nk,2 ≥ 1 requests for `2, and during one of these requests Jk issues a
nested request for `3.

• The partial order on the resources is then `1 � `3, `2 � `3.

• As Ni,1 or Nk,2 becomes large the request symmetry ratio of Ti and Tk drops.
How small the request symmetry ratio needs to be before Ti and Tk have a highly
asymmetric access patterns is defined by a system’s designer.

When the values of Ni,1 and Nk,2 become large in the just presented example, one
would expect a fine-grained locking protocol like the GIPP or the RNLP to yield less
cumulative pi-blocking than a locking protocol that realizes nested locking with group
locks. This is rather intuitive to see. Under the OMIP for example, a single group
lock would protect `1, `2, and `3. Thus each request Ji issues can block Jk despite the
two jobs rarely issue a request for a common resource (when Ni,1 or Nk,2 are large).
In contrast, the request Ji issues for `2 is the only request that can block Jk under the
GIPP and the RNLP.

I introduce one more definition before discussing how these experiments differ from
those in the original work. The following definition plays a key role in describing how
tasks access resources in the experiments.

Definition 6.0.2. A shared resource `b ∈ Γ is a top-level resource if there @`a ∈
Γ s.t. `a � `b.



50 CHAPTER 6. SCHEDULABILITY EXPERIMENTS

The large scale experiments performed in the original work did not consider task
sets with HAAPs beyond one hand-crafted example, which did indicate that use of
coarse-grained locking effected the schedulability of task sets with HAAPs negatively.
For this reason there are two separate experiments conducted, one for task sets with
UAPs and one for task sets with HAAPs. The original experiments considered con-
sidered wide groups and deep groups [43]. A group is considered to be wide if at least
half of its resources are top-level, and deep otherwise. A visual representation of a
wide group and a deep group is depicted in Fig. 6.1. The results from the original ex-
periments did not demonstrate a noticeable effect on schedulability for tasks set that
accessed wide groups versus deep groups, and thus I chose to use only wide groups in
these experiments. Finally, these experiments use the updated fine-grained analysis
for the GIPP presented in Chapter 5, which includes two new constraints not seen in
the original work.

Figure 6.1: Depiction of a wide group on the left, and a deep group on the right. The
wide group has the partial order `0 � `3, `1 � `3, `2 � `3, and the deep group has
the partial order `0 � `1, `0 � `2, `0 � `3. Thus the wide group has three top-level
resources whereas the deep group has just one top-level resource.

The remainder of this chapter is structured as follows. The next two sections will
outline the setup of the experiments for task sets with UAPs and HAAPs, respec-
tively. Afterwards, I will discuss the results and the observations that can be derived
from them. Finally, a small section will outline technical details that relate to the
implementation and execution of the experiments.

6.1 UAP Experiment Setup

The experiment setup for task sets with UAPs is as follows. The values for the pa-
rameters used in the setup are listed in Table 6.1.

• Each task set consisted of n tasks with total utilization U to be scheduled on m
processors under P-EDF scheduling.

• There were nnl latency-sensitive tasks in the task set, and n − nnl non-latency-
sensitive (or “regular”) tasks.

• Periods were drawn uniformly at random from the set pnls = {10ms, 20ms, 25ms,
40ms, 50ms, 100ms, 125ms, 200ms, 250ms, 500ms, 1000ms} for regular tasks. The
values of pnls were inspired by Kramer, Ziegenbein, and Hamann’s work on pro-
ducing real-world automotive benchmarks [35].
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• Periods were drawn uniformly at random from the set pls = {1ms, 2ms, 4ms,
5ms, 8ms} for latency-sensitive tasks.

• Regular tasks shared twelve resources split into equally sized groups of gsize.

• Latency-sensitive tasks shared three resources that belonged to a single group.
Each of the tasks issued one or two outermost requests at random for the re-
sources in the group.

• Regular tasks were assigned a minimal set of resource requests at random to
ensure the desired groups were formed; each task accessed just one group. After-
wards, tasks were assigned outermost requests for resources in their correspond-
ing groups at random until each task made Nmax requests (per job); each of these
outermost requests contained a nested request with a probability of tp.

• In each experiment the outermost critical section lengths of regular tasks were
drawn from [1µs,mcls] uniformly at random wheremcsl varied across [5µs, 1000µs]
in increments of 5µs.

• The outermost critical section lengths of latency-sensitive tasks were drawn uni-
formly at random from [1µs, 15µs].

Parameter Values

m {4, 8, 16}
n {2.0m, 3.0m}
U {0.4m, 0.6m}
nnl {0.0m, 0.5m, 1.0m}
gsize {1, 2, 3, 4}
Nmax {1, 2, 3}

tp {0.5}

Table 6.1: Parameters values used in the UAP experiments.

There were 432 combinations of the parameters in Table 6.1. For some parameter
choices it is not possible to generate task sets with the intended characteristics. For
example, it is not possible to generate a task set of n = 8 tasks with q = 12 resources
split into groups of size gsize = 1 if each task accesses only one group. In this scenario
there would be four groups that are not accessed by any task. After removing such
combinations, there are 348 combinations left. For each of these combinations, I
generated 500 task sets per mcsl value (i.e., per point on the x-axis of the produced
plots seen in Section 6.3), and then tested each task set for schedulability under the
GIPP, OMIP, and the CA-RNLP with a P-EDF schedulability test.
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6.2 HAAP Experiment Setup
The experiment setup for task sets with HAAPs is the same as the setup for task sets
with UAPs (Section 6.1) with a few key differences. The following lists where this
setup differs from the UAPs experiments. The values used in this setup are listed in
Table 6.2.

• There are no latency-sensitive tasks.

• q is now a parameter.

• The values the parameter gsize can take on differs based on the value of q.

• Regular tasks were still assigned the necessary requests at random to ensure the
desired groups were formed.

• To bring up the number of requests each regular task makes to Nmax, tasks were
assigned resource requests in the following way. Let gx be a group with three top-
level resources tlx = {`0, `1, `2}. When a task Ti is assigned a resource request,
the resource it accesses is `a where a = i mod |tlx|. For example T4 would issue
outermost requests for `1.

• The values of Nmax are considerably larger, as this value greatly influences the
request symmetry ratio of two jobs.

Parameter Values

m {4, 8, 16}
n {2.0m, 3.0m}
U {0.4m, 0.6m}
q {4, 5, 8, 10, 12, 15, 16, 20}

gsize 4 when q ∈ {4, 8, 12, 16} 5 when q ∈ {5, 10, 15, 20}
Nmax {5, 10, 15}

tp 0.8

Table 6.2: Parameters values used in the HAAP experiments.

There are 288 total combinations of the parameters in Table 6.2, of which 246 can
generate valid task sets. As with the UAPs experiments, I generated 500 task sets per
mcsl value, and then tested each task set for schedulability under the GIPP, OMIP,
and the CA-RNLP assuming P-EDF scheduling.

6.3 Results
In the large-scale experiments, both the GIPP and the OMIP retained a high level
of schedulability for most parameter configurations. In most cases, the CA-RNLP
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provided a substantially lower level of schedulability than the GIPP or the OMIP.
The full results of the UAP and HAAP experiments are available in Appendix A.1
and Appendix A.2, respectively. I now outline five key observations in the following
sections that are derived from the experiments. Note that in the produced plots I use
HAAP = T to denote that the task sets generated have HAAPs, and UAPs otherwise.

6.3.1 General Performance

The GIPP performs noticeably better than the OMIP and the CA-RNLP in most
of the experiments, and never worse. In corner cases, the performance of the GIPP
approaches that of the OMIP when gsize = 1, and the CA-RNLP when gsize = |Γ|
(i.e., the total number of resources); this is apparent in Fig. 6.2(a) and Fig. 6.2(b),
respectively. As a result, the GIPP never performs worse than the better-performing
of the two baselines.
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(a) Each group consists of a single resource.
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Figure 6.2: The GIPP never performs worse than the CA-RNLP nor the OMIP.

6.3.2 Impact of Latency-Sensitive Tasks

The isolation of latency-sensitive tasks greatly impacts schedulability. Both latency-
sensitive and regular tasks compete for the same set of tokens under the CA-RNLP, and
as a result they do not benefit from the isolation afforded by the GIPP and the OMIP.
The result of this can be seen in Figs. 6.3(a) and 6.3(b) where schedulability quickly
drops under the CA-RNLP as mcsl increases. The benefit of this isolation is still
observable for large task sets that have a relatively large number of latency-sensitive
tasks. Consider Fig. 6.3(b). Tasks sets become unschedulable almost immediately
under the RNLP, whereas roughly 60% and 50% of task sets remain schedulable under
the GIPP and the OMIP, respectively.

6.3.3 Global Token-Lock Bottleneck

Even in the absence of latency-sensitive tasks, schedulability is greatly affected by
the use of a single global token-lock (i.e., tokens are not group-specific). As mcsl in-
creases, schedulability under the CA-RNLP drops at a roughly linear rate in Fig. 6.4(a),
whereas task sets remain schedulable for the entire range of mcsl under the GIPP and
the OMIP. As task sets become larger, the effect of token-contention becomes yet more
apparent, as shown in Fig. 6.4(b). This demonstrates that a single global token-lock
ultimately becomes a bottleneck for otherwise schedulable task sets.
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Figure 6.3: The presence of latency-sensitive tasks dominates schedulability.
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(a) Task sets are schedulable under the GIPP
and the OMIP for entire mcsl range.
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Figure 6.4: The CA-RNLP’s use of a single global token-lock becomes a bottleneck for
resource acquisition.
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(a) Similar behavior among all three protocols
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Figure 6.5: Resource contention dominates schedulability.

6.3.4 Performance under High Resource-Contention

The benefits of (group) independence preservation diminish under high contention for
all resources. This is shown in Fig. 6.5(a), where roughly the same pattern of schedu-
lability is seen under all three protocols. In contrast, the benefits of independence
preservation are more clearly seen when there is a greater degree of isolation as in
Fig. 6.5(b).
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6.3.5 Performance under Varying Access Patterns

The rules and structure of the GIPP and the CA-RNLP allow for top-level resources
to be acquired independently, which is not possible with the OMIP’s group locks.
Fig. 6.6(a) demonstrates that fine-grained locking offers a noticeable increase in schedu-
lability over group locks in the presence of tasks with HAAPs; the GIPP and the
CA-RNLP perform identically, whereas schedulability under the OMIP suffers due
to group-lock contention. However, once resources are split into two groups as in
Fig. 6.6(b), the CA-RNLP performs worse than the OMIP, which further suggests
that the use of a single global token-lock serves as a bottleneck for schedulability.
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Figure 6.6: Group-lock and token contention dominate schedulability.

6.4 Technical Details
In the final section of this chapter, I provide a brief outline on some of the technical
details regarding the actual execution of the large-scale experiments. The fined-grained
analysis I implemented for the GIPP, as well as the OMIP’s analysis are available in
the SchedCAT library; both are implemented in C++ with the use of the GNU Linear
Programming Kit (GLPK) [28]. The SchedCAT code used to generate the task sets is
written in python. The python code generates task sets for a given set of parameters
and then passes the task sets onto the C++ code via bindings generated with the
Simplified Wrapper and Interface Generator (SWIG) [46]. The general idea was to use
python for task set generation, plot production, and other data manipulation tasks
due to its rich package database and quick development time, and then outsourcing
the “heavy lifting” to the C++ code.

Running the experiments took considerable processing power. In particular, the
code that solves the LPs ran for roughly one week on 288 Intel Xeon E7-8857 v2
cores. The computations were almost entirely CPU bound and thus did not require
any significant amount of memory or disk space.

All of the code used to conduct the experiments, process the results, and produce
the plots is available at http://www.jamesrobb.ca/downloads/technical_writing/
thesis/gipp_code.tar.bz2.

http://www.jamesrobb.ca/downloads/technical_writing/thesis/gipp_code.tar.bz2
http://www.jamesrobb.ca/downloads/technical_writing/thesis/gipp_code.tar.bz2


Chapter 7

Conclusion

I have examined and defined what it means to be independence-preserving in the
context of fine-grained nested locking. On the one hand, I have established that outer-
lock independence preservation yields non-optimal bounds on s-oblivious pi-blocking.
On the other hand, I demonstrate that group independence preservation and support
for fine-grained nested locking can be realized jointly with asymptotically optimal pi-
blocking bounds (under s-oblivious analysis) via the GIPP, the first multiprocessor
real-time protocol to accomplish this trifecta.

To realize the GIPP, I constructed the CKIP as a building block, which is note-
worthy in itself as it is the first asymptotically optimal, non-nested independence-
preserving, k-exclusion lock for clustered scheduling.

Finally, I demonstrated via fined-grained pi-blocking analysis and empirical exper-
iments that group independence preservation alleviates the bottleneck imposed by a
single token-lock in the RNLP (as well as group locks under the OMIP), while also
being able to support workloads with latency-sensitive tasks.

In future work, it would be interesting to extend the GIPP to semi-partitioned
scheduling [3, 6, 18]. It will also be necessary to study the real-world overheads
(e.g., cache misses, TLB flushes, inter-processor interrupts, etc.), which the GIPP
is particularly exposed to due to its use of allocation inheritance, in a practical system
such as LITMUSRT [13, 21].
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Appendix A

Full Results for Schedulability
Experiments

For the sake of completeness and transparency, the following two sections present
the full results for the large-scale schedulability experiments presented in Chapter 6.
The full results for the UAP experiments and the HAAP experiments are shown in
Appendix A.1 and Appendix A.2, respectively.

A.1 UAP Experiment Results
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A.2 HAAP Experiment Results
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